A BIOMASSZA ENERGETIKAI CÉLÚ HASZNOSÍTÁSÁNAK
HATÁSA A MUNKAERŐPIACRA
ÉS A VERSENYKÉPESSÉGRE

Farkas Ágnes

Gödöllő
2017
A doktori iskola megnevezése: Gazdálkodás és Szervezéstudományok Doktori Iskola

Tudományága Gazdálkodás- és szervezéstudományok

Vezetője Dr. Lehota József DSc.
egyetemi tanár,
az MTA doktora
SZIE Gazdaság- és Társadalomtudományi Kar
Üzleti Tudományok Intézete

Témavezető: Dr. habil Magda Róbert Ph.D.
egyetemi docens
SZIE Közgazdaságtudományi, Jogi és Módszertani
Intézete

Az iskolavezető jóváhagyása A témavezető jóváhagyása
TARTALOMJEGYZÉK

1. BEVEZETÉS .. 4
 1.1. A kutatás célja .. 4
 1.2. A kutatási téma aktualitása .. 5
 1.3. A kutatás hipotézisei ... 7

2. SZAKIRODALMI FELDOLGOZÁS ... 8
 2.1. Hazánk energiapiaci kihívásai, megoldási alternatívák .. 8
 2.1.1. Hazánk energiaszerkezete ... 8
 2.1.2. Az energiafüggőség csökkenését szolgáló alternatívák ... 10
 2.1.2.1. Az energiafogyasztás racionalizálása ... 10
 2.1.2.2. A fosszilis energiaforrásokat kiváltó alternatívák ... 12
 2.2. A biomassza-hasznosítás, mint a „zöld ország” kialakításának alappillére 21
 2.2.1. A biomassza kategorizálása .. 21
 2.2.1.1. Szilárd biomassza ... 22
 2.2.1.2. Bioüzemanyagok ... 26
 2.2.1.3. Biogáz .. 27
 2.2.2. A biomassza és más megújuló energiaforrások fogyasztási trendje 28
 2.2.3. A biomassza energetikai felhasználásának ellátási lánca 32
 2.2.4. A biomassza energetikai felhasználásának előnyei és hátrányai 32
 2.3. Munkaerőpiaci folyamatok – foglalkoztatotottság és munkanélküliség 33
 2.3.1. Munkaerőpiac a gyakorlatban .. 34
 2.3.2. A biomassza energetikai hasznosításához kapcsolódó munkaerőpiac sajátosságai 37
 2.4. Stratégia és versenyképesség .. 40
 2.4.1. Az EU és Magyarország versenyképessége .. 41
 2.4.2. A versenyképesség és a core competence kapcsolata 44
 2.4.3. A bioenergia térnyerésének várható hatása a versenyképességre 45
 2.4.4. Az ökológiai lábnyom ... 47

3. ÁLTALÁNOS ÉS ENERGETIKAI KÖRNYEZETI TÉNYEZŐK BEMUTATása 49
 3.1. Politikai tényezők .. 49
 3.2. Jogi tényezők ... 54
 3.3. Gazdasági tényezők ... 55
 3.4. Társadalmi tényezők .. 59
 3.5. Technológiai tényezők .. 64
 3.6. Környezeti tényezők .. 67
4. ANYAG ÉS MÓDSZER ... 73
 4.1. Az elméleti elemzés és az abból származó adatok konklúziói 73
 4.2. A témához kapcsolódó empirikus kutatás módszertana 75
 4.2.1. Makroszintű metaelemzés ... 75
 4.2.2. Kérdőíves felmérés ... 78
5. SAJÁT KUTATÁS EREDMÉNYEI .. 80
 5.1. A metaelemzés eredményei .. 80
 5.1.1. Világszinten történő elemzés .. 80
 5.1.2. Európai Unióra vetített elemzés .. 82
 5.1.2.1. Európai Unión belül elhelyezkedő nagy országok 83
 5.1.2.2. Európai Unión belül elhelyezkedő kis országok 85
 5.2. A kérdőíves kutatás eredményei .. 88
 5.3. Új és újszerű tudományos eredmények ... 99
6. KÖVETKEZTETÉSEK, JAVASLATOK .. 101
7. ÖSSZEFoglalÁS ... 109
8. SUMMARY ... 110
MELLÉKLETEK ... 111
1. BEVEZETÉS

1.1. A kutatás célja

Napjainkban a környezetváltozást érintő kérdések mellett a mezőgazdaság is egyre inkább a figyelem középpontjába kerül. A kereskedelmi forgalomba hozott élelmiszerek előállítása során keletkező mezőgazdasági melléktermékek kiválóan hasznosíthatóak az energiaszektorban.

A mezőgazdasági hulladékok hasznosítása mellett nagy szerepet kapnak azon környezetkímélő eljárások, amelyek az élővilág értékeinek megóvását szolgálták.

A globálisan is érezhető környezeti hatások közül kiemelendő a Föld energiatartalékainak csökkenése. Habár a fosszilis energiahordozók még egy ideig elegendőek, annak klímaváltozást előidéző hatásai miatt célzottan a szénvezetek használatát korlátozni. Magyarország szénkészletének csökkenését a megújuló energiák bevonásával is igyekszik ellensúlyozni.

Hazánk adottságait figyelembe véve a biomassza energetikai hasznosítása kínálja az egyik, de talán a legnagyobb lehetőséget a fosszilis energiaforrások kiváltására. Tekintettel arra, hogy a biomassza felhasználása a leginkább a közüzemek szintjén tekinthető valós megoldásnak.

Disszertációim a környezeti és energetikai nehézségek enyhítésére irányuló nemzeti stratégia körvonalait vázolja fel. Hazánk a biomassza energetikai hasznosításával kiaknázhatja a benne rejlő munkahelyteremtő- és a vidékmegetartó-képességet. Az energiaszerkezet átalakulásából kifolyólag a szektórd decentralizáltabbá válhat, valamint a zöldenergia hasznosítása növelheti Magyarország versenyképességét.

A fentieket összegezve a disszertáció középpontjában a zöldenergia, a munkahelyteremtés és a versenyképesség áll. Az 1. ábra bemutatja, hogy a disszertáció milyen logikai felépítést követ a megnevezett fogalmak mélyreható elemzése során.

1. ábra: A kutatás logikai felépítése, általános sémája

Forrás: Saját szerkesztés
A célok megfogalmazása mellett fontosnak tartom a kívánt jövőbeli állapotot relevánsan befolyásoló tényezőket felsorolni, valamint azok hatásait vizsgálni. A foglalkoztatás növelése, az innovációs tevékenységek és a megújuló energiaforrások hasznosításának intenzívebbé tétele, valamint a természeti tényezők megóvása nagyban szolgálja egy versenyképes, zöld ország kialakulását.

A stratégiaalkotás során nagy hangsúlyt fektetek a környezeti tényezők kiértékelésére. A doktori diszsertáció első része a témához kapcsolható alapfogalmak, valamint környezeti tényezők ismertetését foglalja magában. Ezt követően a versenyképességre ható faktorok elemzését végzem el, illetve a kistérségek attitűdjét mutatom be egy kérdőív felméréssel segítségével.

A környezeti elemzés és a kutatómunka eredményeiből következtetve egy, a fenntarthatóságot szem előtt tartó szenárió alappilléreit vázolom fel, amely véleményem szerint lehetővé teszi a megújuló energiaforrások – azon belül és a biomassza – energiafelhasználáson belüli részarányának növekedését és a zöld, versenyképes Magyarország kialakítását. A diszsertációban a következő célokat tűztem ki magam elé:

1. A témasefektív makromutatók értékelése, valamint az Európai Unió tagállamainak és a Magyarország piaci pozíciójának elemzése.
2. A megújuló energiaforrások és a versenyképesség közötti kapcsolat értékelése.
3. A munkanélküliség, az innováció, az emisszió és a versenyképességi mutató közötti kapcsolat elemzése.
4. Egy gazdasági jellegű versenyképességi mutatószám relevanciájának elemzése.
5. A biomassza energetikai hasznosításának lokális szintű sajátosságainak vizsgálata, különös tekintettel a választott kistérség helyi lakosainak témát érintő attitűdjére.
7. Zöld, versenyképes ország kialakulását célzó szenárió alappilléreinek felvázolása.

1.2. A kutatási téma aktualitása

A globalizációknak köszönhetően ugyan egyre gyorsabban fejlődött a kommunikáció, a hírközlés és az infrastruktúra, azonban e folyamatnak számos hátránya ismeretes. Az emberiség életvitelle egyre nagyobb energiaigénytel jár, amely a megoldásra váró problémák széles spektrumát okozza. Elgondolkodtató a Nobel-díjas Richard Smalley kutatási eredménye, amelyben a tíz legfontosabb globális kihívást vázolta fel. Gazdasági, társadalmi, technológiai és ideológiai kérdésekből vázolta fel azon kihívásokat, amelyek megoldása nélkül a többer kezelését tudjuk megvalósítani.
Smalley (2005) szerint az emberiség előtt álló jelentősebb globális kihívások a következők:

1. energiaellátás;
2. vízellátás;
3. élelmiszer-ellátás;
4. természeti környezet megvédése.

A Smalley által vezetett tudóscsoport szerint az energiaellátás azon világméretű probléma, amelynek megoldása a legtöbbnek azonos a legfontosabb. Ugyan a XX. század technológiai vívmányai lehetővé tették a kényelmesebb életmódot, azonban a televízió, a számítógép, az autó és egyéb műszaki- elektronikai eszközök jelentős mennyiségű energiát igényelnek. A szükséges energiamennyiséget jelenleg csak a Föld szén-tartalmának csökkentésével tudjuk biztosítani.

A szénkészlet csökkenése globális szinten okoz energiafüggőséget, valamint számtétevőbb klimatikus változásokat, amely egyre szélsőségesebb vitákat, nézeteket és jelenségeket vált ki. Az országok együttesen és egymástól elkülönülve is keresik a megoldási lehetőségeket.

Az energiaválság kezelésére számos szenzáció látott napvilágot, de ezen elképzelések nem minden esetben képviselnek azonos álláspontot. A szakértők egyetértnek abban, hogy törekedni kell a fosszilis energiahordozók kiváltására. A legtöbb ország kiemelt hangsúlyt fektet a környezetbarát energiaforrásokra, azonban az energiaszerkezet átalakítására vonatkozó nemzeti forgatókönyvek eltérnek egymástól.

A jövőorientált gondolkodásmód tükrében Magyarország kiemelten foglalkozik a megújuló energiaforrások törvényésével. Hazánk vállalta, hogy 2020-ra 14,65%-ra növeli a megújuló energiaforrások részarányát az energiafelhasználáson belül (a 2013-as részarány 9,8%).

A részarány növelésére vonatkozó cél eléréséhez olyan átfogó stratégia kialakítása szükséges, amely figyelembe veszi a környezeti tényezőket is (gazdasági, jogi, társadalmi, környezeti tényezők). A megújuló energiaforrások kiaknázása, azok munkahelyteremtő képessége elősegíti a helyi lakosság „leszakadó” rétegeinek társadalmi intézéséért, és energiaszerkezet átalakítására vonatkozó nemzeti forgatókönyvek eltérnek egymástól.

1.3. A kutatás hipotézisei

Kutatási céljaim és hipotéziseim megfogalmazása során kiemelten figyelembe kellett venni a megújuló energiaszektor jellegzetességeit. Tekintettel arra, hogy egy innovatív ágazatot vizsgálunk, szem előtt kellett tartani, hogy viszonylag kevés empirikus anyag áll rendelkezésre és viszonylag nehézkes a hatékony adatfelvétel, illetve az elemzés elvégzése.

Szakértők véleménye szerint a biomassza energetikai hasznosítása jellemzően a lokális gazdaságok versenyképességét szolgálja, ezáltal jelenleg közüzemek energiaellátásának szintjén tekinthető középhosszú távon hatékony megoldásnak, így az általam felállított hipotéziseket a fent említettetek figyelembevételével fogalmaztam meg:

- **1. hipotézis**
 Az Európai Unió tagországok egyes makromutatóiból kiindulva a megújuló energiaforrások felhasználása szignifikáns kapcsolatban áll a versenyképességgel. A korreláció nem feltétlen egy időpontra vonatkozik, hanem sokkal relevánsabban kimutatható egy meghatározott időszakra vetítve. A biomassza részaránya azonban nem korrelál a versenyképesség mértékével, mivel az országok adottságai és az energiaszerkezete eltérő.

- **2. hipotézis**
 Az Európai Unió tagországok elemzésbe bevont makroadatai megmagyarázzák a versenyképességi mutató alakulását, amelyre a megújuló energiaforrások aránya mellett befolyással van az innováció, a munkaerőpiac és az adott ország ÜHG-emissziója.

- **3. hipotézis**
 A makroelemzésbe bevont változók közül a megújuló energiaforrások részaránya, valamint az ÜHG-emisszió mutat relevánsabb kapcsolatot az ökológiai lábnyommal, míg a munkanélküliségi ráta és a K+F aránya a GCI-vel mutat szignifikánsabb kapcsolatot.

- **4. hipotézis**
 A Gyöngyös kistérségben található önkormányzatok pozitív attitűddel rendelkeznek a zöldenergia-hasznosítás lokális hatásainak vonatkozásában. Elkötelezettek abban, hogy a település energiaszükségletét teljes mértékben átalakítsák, amelynek első lépéseit már megtették.

- **5. hipotézis**
 Az önkormányzatok szerint a biomassza térnyerését szolgáló beruházások munkahelyteremtő-képességgel rendelkeznek, amelynek következtében javulnak a lokális foglalkoztatási mutatók. Számos kedvező hatás közül kiemelkedik az újonnan létrejövő munkahelyek számának folyamatos emelkedése.
2. SZAKIRODALMI FELDOLGOZÁS

2.1. Hazánk energiapiaci kihívásai és az azokra adható megoldások

A XX. század a technológiai haladás évszázada volt. A globalizálódó világban az új kommunikációs és egyéb technológiai vívmányok megjelenése között egyre kevesebben telt el. Ezen eszközök hálózatba való kapcsolása mind-mind energiát igényel, mint ahogyan a XXI. századi ember életvitele is. A korlátozottan rendelkezésre álló fosszilis tüzelőanyagok kérdésköre először a 70-es években merült fel. Az egyre növekvő energiaigény újabb és újabb problémákat helyez előtérbe, amelyek mind egyre súrúbbak a fosszilis tüzelőanyagok kiváltását. A Föld szénkészleteinek alakulására vonatkozóan napvilágot láttak optimista és pesszimista szenáriók is, azonban mindenki egyetért abban, hogy folyamatosan szorgalmazni kell az innovatív megoldásokat a fenntartható fejlődés érdekében. (Magda R., 2012)

2.1.1. Hazánk energiaszerkezete

Magyarország energiaszükséglete igazodott a globális trendhez, ezzel előirányozva az ország importfüggőségét. (1. táblázat)

1. táblázat: Hazánk energiamérlege

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Mennyiség (PJ)</th>
<th>Megnevezés</th>
<th>Mennyiség (PJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termelés</td>
<td>486,4</td>
<td>434,1</td>
<td>439,5</td>
</tr>
<tr>
<td>Behozatal</td>
<td>685,2</td>
<td>910,3</td>
<td>898,3</td>
</tr>
<tr>
<td>Összesen</td>
<td>1171,6</td>
<td>1344,4</td>
<td>1337,8</td>
</tr>
</tbody>
</table>

Forrás: Központi Statisztikai Hivatal, 2015a
Az utóbbi évek egyik meghatározó, energiafelhasználást csökkentő intézkedése a hagyományos izzók kivonása volt. Az energiatakarékos izzókra való átallás nagyban enyhítette hazánk energiaválságát, ugyanis ezen izzók teljesítménye (ezáltal az energiaigénye is) messze túlhaladta a napjainkban alkalmazott típusok energiaigényét. A régebbiek 40W, 60W vagy esetleg 100W-os teljesítménnyel működtek, míg a napjainkban a halogén izzók teljesítménye 42W, a kompakt fénycsöveké 12W, míg a LED-izzóké 10W körül alakul. Tekintettel arra, hogy az egyes típusok fényerőssége megközelítőleg azonos, a modern izzók alkalmazását leginkább azok gazdaságossága indokolja. (ELMŰ – ÉMÁSZ, 2011)

Az energiaszerkezet felépítése és az életvitel alakulása együttesen arra enged következtetni, hogy az importfüggőség még hosszú éveken (évtizedeken) keresztül nem fog jelentősen csökkenni. A tendencia megfordítása érdekében olyan megoldási alternatívákat szükséges kidolgozni, amelyek képesek növelni hazánk energiapiaci önállóságát és ezen keresztül versenyképességét. Erdődi (2012) szerint várhatóan ezen túl is a szénvegyületek és a földgáz tülsúlya érvényesül hazánk területén.

Az energiafüggőség nem csupán hazánkra hárít jelentős terhet, hanem az integráció számos más országára is. Az EUROSTAT (2014a, 2015a) adatai alapján arra következtethetünk, hogy hazánk az energiafüggőség mértékét szemléltető rangsor középső részében fogalal helyet.

- Románia: 17,1%
- Horvátország: 48,3%
- Szlovénia: 48,7%
- **Magyarország**: 55,6%
- Szlovákia: 58,7%
- Ausztria: 60,8%
- Németország: 61,9%

A térség országaival együttesen azon országok csoportjába tartozunk, ahol viszonylag mérsékelt az energiafüggőség mértéke. Az EUROSTAT 2015. évre vetített adata továbbá azt is
megmutatja, hogy egyes országok függőségét kifejező rátája sokkal magasabb, mint hazánké. Németország energiafüggőségi szintje 61,9%, de az integráció belül a legkilátástalanabb helyzetben Ciprus van (97,7%). Habár az integráció országainak importfüggőségének szintje eltér egymástól, a legtöbb ország energia-behozatalra kényszerül. A legjelentősebb exportőr Oroszország, amely Ukrajnán keresztül számos tagállamot lát el energiával. (B. Horváth, 2014a)

Egy átgondolt, racionális energiafelhasználáson alapuló életmód nagyban befolyásolná hazánk energiapiaci helyzetét, ezáltal csökkene az ország importfüggősége. Épp ezért a hatékony megoldások ösztönzése a cél, amelyet több más országgal egyetemben az USA is felismert. (Massachussets Institute of Technology, 2006)

2.1.2. Az importfüggőség csökkenését szolgáló megoldási alternatívák

Az energiaimport kiváltására két megoldás kínálkozik:

- az energiafelhasználás racionalizálása,
- az alternatív energiaforrások hasznosítása.

Természetesen e két megoldás nem zárja ki egymást; ezek bármely kombinációja szintén arra az eredményre vezet, hogy csökken hazánk kényszerhelyzete az energia-behozatalra vonatkozóan.

2.1.2.1. Az energiafogyasztás racionalizálása

Az elmúlt évtizedekben tapasztalt változások mindenféle indokolják, hogy az energiafogyasztás elemzését szektorális bontásban is elvégezzem. A 2. ábra arról tanúskodik, hogy 2006-ig számottevően növekedett a közlekedés energiaigénye, amelynek részaránya – a változások ellenére – 2013-ban meghaladta a 30%-os arányt.

![2. ábra: A végső energiafelhasználás megoszlása az EU-ban (millió t)](image-url)

Forrás: EUROSTAT, 2015b

Az energiafelhasználást nagymértékben befolyásolja, hogy az épületek hőszigetelése nem kellően hatékony. Magyarországon a jelenleg elavult technológiát a 2018-ban felváltják azok az eljárások, amelyek teljesíti az új hőszigetelési határértékeket. Az új eljárások mellett is még messze elmarad a 2020-as végrehajtás, amely szerint deklarálnak a közel nulla energiakibocsájtású épületekre vonatkozó elképzeléseket. (Kruchina, 2015)

Az integráció szintjén létrehozott forgatókönyvek a fenntartható fejlődés szellemiségét ültetik át a gyakorlatba. Fő céljuk a környezeti szélsőséges elemek kezelése. Az optimista és a pesszimista elképzelések egyaránt fontosak, mivel a realista megvalósítható állapotokat egy intervallumba zárják. A BAU és a Policy forgatókönyvben foglalt mérőszámok között számottevő különbségek is fellelhetőek, de a bioüzemanyag által előálló kibocsátás csökkenésében mindkét szcenárió ugyanúgy kalkulál. A legnagyobb emisszió-csökkenést a megújuló energiaforrások térnyerésétől remélünk, mintegy 15-15 ezer kilótonnát. (Szendrényi, 2010)
Véleményem szerint kiemelten fontos az energiafüggőséget szem előtt tartó megoldások előtérbe helyezése. Az új technológiák megismerésére irányuló kutatások megvalósítása mellett fontosnak tartom a mindennapi életvitel fenntartásához kapcsolódó energiapazarlás csökkentését is. Ezek együttesen eredményezhetik hazánk importfüggőségének csökkenését.

2.1.2.2. A fosszilis energiaforrásokat kiváltó alternatívák

A világpiacon, azon belül Ázsiában az ezredforduló küszöbén évente 3,6%-kal nőtt a köölaj kereslete. (Cho et al., 2011) Az erőforrások kiváltására épp ezért szükség van, s ennek szellemében erre egyre nagyobb figyelem összpontosul az Európai Unióban és hazánkban is. A 3. ábra bemutatja, hogy a legtöbb EU tagországban, így Magyarország energiaszerkezetében is a fosszilis energiaforrások túlsúlya érvényesül. A köölaj és a földgáz egyaránt a szén- és hidrogénatomokat is tartalmazó nyersanyagok csoportjába tartozik (Reményi, 2013), amelyek a világ energiaszükségletének jelentős hányadát fedezik. A rendelkezésre álló nyersanyagok évmilliók alatt keletkeztek, azaz nem pótlódnak, emellett korlátozott mennyiségben állnak rendelkezésünkre (Erdődi, 2012), amely szükségessé teszi az energiahordozók hatékony helyettesítését és az alternatív energiaforrások minél nagyobb volumenű hasznosítását.

![3. ábra: Az Európai Unió és Magyarország energiaszerkezetének végső felhasználás vonatkozásában, 2011](image)

Forrás: Európai Bizottság, 2013

A nukleáris energia előállítása során egyetlen uránmag hasítása mintegy 200 millió elektronvolt energiát generál. (Homonnay – Varga, 2007) A nukleáris energiáról alkotott vélemények igen vegyes képet mutatnak. Egyesek szerint környezetkímélő, versenyképes energiaforrás (Comby, [s.a.]), míg az „ellentábor” általában abból a tényből indul ki, hogy az ember először a nukleáris energiával, mint tömegpusztító fegyverrel találkozott. Úgy vélik, hogy a katonai és a szankcionálási eszközökkel való alkalmazása az emberiség egy részében sokszoros hatást idézett elő. A kétkedések ellenére mára a legtöbb szakember egyetért abban, hogy a nukleáris energia fontos szerepet játszhat a fosszilis energiahordozók kiváltásában. (Bisztriczky, 1989)

Tekintettel arra, hogy hazánk területét nem érintik a Japánban történt ilyen és hasonló földrengések, nukleáris energiatermelésünk zavartalan volt. 2006 és 2011 között lényegesen nem változott hazánk nukleáris energia-felhasználása. Az elektromos energia előállításában megmutatkozó 40% körüli részarány 2013-ra tovább növekedett, így azon országok közé tartozunk, amelyek nagy figyelmet fordítanak erre a lehetőségre. [5. számú melléklet]

A megújuló energiaforrások a XX. század második felében egyre nagyobb visszhangot kaptak, és azok nem csak a környezet megóvását és a széntartalékok megkímélését segítik, hanem javítják az energiamérleget mutatóit, illetve egy új ipará elindítják. A megújuló energiaforrások alkalmazásának következtében kialakulhat egy zöld gazdaság és társadalom, amely számos más ipará innovatív forradalmát is elindíthatja.

Az Európai Unió is támogatja a megújuló energiaforrásokra való átállást. Egyes vélemények szerint 2050-ra a bővülő termelésnek köszönhetően elképzelhető, hogy az energiaigény 100%-át megújuló energiaforrások felhasználásával fedezzük. (Greenpeace, 2015a) Ugyanakkor a Greenpeace (2015b) arra is felhívja a figyelmet, hogy a 2050-re megvalósuló teljes energetikai megújulás legnagyobb akadályát a politikai tényezők jelentik.

Az Európai Bizottság egyértelműen kijelentette, hogy határozott lépéseket kíván tenni a megújuló energiaforrások részarányának növelésére. Az EU országainak 2017-ig kellene arról dönteniük, hogy miképpen járulnak hozzá az európai szintű „zöldülési folyamathoz”. Azon államoknak, amelyek a Bizottság megfelelése szerint túl keveset vállalnak, pénzt kell fizetniük az uniós alapba, amiből a megújuló energiaforrások fejlesztését finanszíroznak. (Origo, 2015)

A zöldenergia termelésével és hasznosításával foglalkozó projektek igen magas beruházási igénytel rendelkeznek, azonban a 2050-re előrevertett számítások arra engednek következtetni, hogy a megtakarítások túlszárnyalják a befektetett összeget. (Greenpeace, 2015b) Az EU
rendszeresen foglalkozik a zöld programcsomaggal, amellyel a tagországok környezetének megóvása érhető el.

Az első jelentős környezetvédelmi kezdeményezés a Kyotói Egyezmény volt (1997), amely az üvegházhatású gázok emissziójának csökkentését tűzte ki célul a protokolt aláíró országok körében. Az egyezmény realizálását követően egyre nagyobb figyelmet kaptak a környezetvédelemmel összefüggő kérdések, mint például a Föld csökkenő szénkészlete és a fosszilis energiahordozók általános használatára visszavezethető globális felmelegedés.

Az energetikai kérdések fontosságát mutatja az a tény is, hogy az illetékesek külön almutatót hoztak létre a közlekedésre vetítve. Ez alapján az EU28 országai közül csak Svédország érte el a 2020-ra kijutott célt (a megújuló energiaforrások 49%-os részarányának elérése). (MTI, 2015a) Az EU-s szinten piacvezető Svédország már 2012-ben is a megújulókra alapozta az ország energiaellátását. 2013-ra ez az arány továbbemelkedett. Az 5. ábrán is látható, hogy a svéd adat (52,1%) hozzávetőlegesen 3,5-szerese az integráció átlagának. Svédországot Lettország, Finnország és Ausztria követi. A rangsor végén az Egyesült Királyság, Hollandia, Málta és Luxemburg foglal helyet.

Hazánk energiaszerkezetének hasonlóképpen alakul, mint az EU tagállamok többségében (lásd: 3. ábra), nevezetesen a fosszilis tüzelőanyagok (köolaj és a földgáz) túlsúlya érvényesül. A 2013-as évben az energiafelhasználás 9,8%-át fedeztük megújuló energiaforrásokból. A legfrissebb adatok értelmében a magyarországi 14,65%-os vállalás realizál elérhetővé válik, ugyanis 2014-re 11,1%-ra nőtt a megújuló energiaforrások részaránya, így ezen arányszámot a 2020-as célkitűzés már csak 3,55 százalékponttal haladja meg. (BruxInfo, 2014a) Ennek ellenére a 2020-
as évre tervezett 180 PJ/év körüli mennyiség még nagyon távolinak tűnik (Szendrényi, 2010), hiszen az évente hasznosított energiamennyiség még a 100 PJ-t sem éri el.

5. ábra: A megújuló energiaforrások részaránya az EU28-ban és a tagországokban, 2013 (%)

Forrás: EUROSTAT, 2015c alapján saját szerkesztés

Véleményem szerint a 2020-as és a 2030-as integrációs vállalások teljesíthetősége megkérđőjelezhető, tekintettel arra, hogy a megújuló energiaforrások részaránya 2013-ban még 5 százalékponttal maradt el a 2020-as célkitűzéstől. A 14,65%-os részarány eléréshez hazánknak 7 év alatt 50%-kal kellene növelnie a rátát. Az egyre hatékonyabb energiafelhasználás érdekében szem előtt kell tartani, hogy mely országnak mely megújuló energiához vannak meg az adottságai. A környezeti paraméterek ismeretében kiválaszthatja minden állam azt az egy, esetleg két megújuló energiaforrást, amelynek alkalmazását a jövőben szorgalmazni kívánja.

Az egyre hatékonyabb energiafelhasználás érdekében szem előtt kell tartani, hogy mely országnak mely megújuló energiához vannak meg az adottságai. A környezeti paraméterek ismeretében kiválaszthatja minden állam azt az egy, esetleg két megújuló energiaforrást, amelynek alkalmazását a jövőben szorgalmazni kívánja.

A környezeti előnyök mellett számos más érv szól a megújuló energiaforrások mellett. Ezen a térén gazdaságilag teljesen új modell látszik megvalósulni. A zöldenergia lehetővé teszi az energiapiac decentralizációját, amely az energiatermelés és -felhasználás térbeli közeledését
jelenti. Az új modell egyben magával vonja a háztartások aktivizálódását (Portfolio, 2014), valamint az energiafüggőség csökkenését is. Erre számos lehetőség áll rendelkezésre, amelyeket a 6. ábra szemlélhet.

![Diagram of energy sources](image)

6. ábra: A megújuló erőforrások alapvető típusai

Forrás: Varró (2012) alapján saját szerkesztés

A nap-, a víz-, a szél-, a geotermikus energia, valamint a biomassza egyaránt olyan energiaforrások, melyek többé-kevésbé rendelkezésre állnak. Mindezek mellett meg kell említeni a fotovoltaikus energiát és a mozgási energiát is, mint további lehetséges energiaforrásokat.

Világszinten az energiafogyasztás 10%-át biomassza felhasználásából fedezzük. (Timmons et al., 2014) Ahogy azt a 2. táblázat is mutatja, a megújuló energiaforrásokon belül Magyarország is a biomassza energetikai célú hasznosítására helyezte és helyezi a legnagyobb hangsúlyt (Varró, 2012).

<table>
<thead>
<tr>
<th>Energiahordozó típusa</th>
<th>Potenciál (PJ)</th>
<th>Hasznosított %</th>
<th>Hasznosítási arány</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomassza</td>
<td>265</td>
<td>49,2</td>
<td>91,5%</td>
</tr>
<tr>
<td>Geotermikus energia</td>
<td>63,5</td>
<td>3,6</td>
<td>6,7%</td>
</tr>
<tr>
<td>Napenergia</td>
<td>1838</td>
<td>0,1</td>
<td>0,2%</td>
</tr>
<tr>
<td>Szélenergia</td>
<td>532,8</td>
<td>0,16</td>
<td>0,3%</td>
</tr>
<tr>
<td>Vízenergia</td>
<td>14,4</td>
<td>0,7</td>
<td>1,3%</td>
</tr>
<tr>
<td>ÖSSZESEN:</td>
<td>2713,7</td>
<td>53,76</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Forrás: Varró, 2012

A 2010-ben hasznosított energiamennyiség alapján is jól látható, hogy túlnyomó részben a mezőgazdasági és az ipari hulladékokat használunk fel energetikai célokra. A geotermikus energia szintén jelentős energiamennyiségét szolgáltat a távhőszolgáltatásnál, azonban részaránya meg sem közelíti a biomassza arányát. Ez az arány állandósulni látszik, hiszen 2013-
ban is 90% körül alakult a biomassza részaránya az alternatív energiahordozók között. (EUROSTAT, 2015d) Véleményem szerint célszerű a biomassza energetikai hasznosítása mellett más energiahordozókról is támaszkodni. Törekedni kell a rendelkezésre álló kapacitások teljes kiaknázására, legyen szó bioenergiáról, napenergiáról, vagy éppen földhőről.

Megújuló energiából származó energiafelhasználásunk annak ellenére mérsékelt, hogy adottságaink sokkal nagyobb volumenű termelést ténték lehetővé. A legalacsonyabb kihasználtság a nap- és a szélenergia esetében figyelhető meg, míg az ország biomassza-potenciáljának viszonylag jelentős részét hasznosítja.

Hazánk adottságai számos európai országnál kedvezőbbek, hiszen a napsütéses órák száma évente mintegy kétezer óra. Ennek ellenére a befektetők nem invesztálnak a napenergia hasznosításába, tekintettel arra, hogy a napútéses órák száma rendkívüli mértékben ingadozik az évszakok között a kontinentális éghajlat sajátosságai okán.

Az előzőek értelmében tehát számos ország nagyobb mértékben hasznosítja a napenergiát, mint Magyarország; még az 1 PJ-t sem éri el éves napenergia-hasznosításunk. (EUROSTAT, 2016a) A napenergia átalakítása kétféleképpen történhet: a napkollektorokkal hő-, míg a napelemekkel elektromos energiát lehet létrehozni. Ezen technológiák jelenleg igen alacsony hatásfokúak, és jelentős beruházást igényelnek. (Erdődi, 2012) A hőenergia- és az elektromosáram-termelést célszerű különböztetni, ugyanis a napkollektorok és a napelemek eltérő adottságokkal rendelkeznek. A napkollektorok a légszennyezés vonatkozásában az egyik leggértékesebb megoldásnak tekinthetőek, és kevés helyet is igényelnek, azonban az előzőekben említett gazdaságtossági problémakon belül hátrányként fogalmazható meg, hogy alacsony a munkahelyteremtő-képességük. Az elektromos áram termelésére alkalmas napelemek az egyik legnagyobb emisszióval rendelkező megoldást jelentik. Ugyan az egységnyi energiamennyiség előállítása nem igényel nagy területet, de nem is generál olyan mértékű jövedelmet a helyiek számára, hogy az számottevően megváltoztatná az életszínvonalukat. (Dombi, 2013)

A vízenergia jellemzően az elektromos áram előállításában játszik fontos szerepet (Szeredi et. al., 2010), de a Föld vízkeresztének összesen mintegy 3%-a édesvíz. (IEA, 2012) Mivel magas a vízenergia beruházási költsége, azért a szakemberek igyekeznek olyan megoldásokat találni, amelyek a tőkeinvésztíció csökkenhető. (Szabó – Barótfi, 2002)

A geotermikus energia a biomassza után hazánk legjelentősebb megújuló energiaforrása. Magyarország adottságai kifejezetten kedvezőek számítanak, annak ellenére, hogy nincsenek működő vulkánjaink. Az ország területének nagy részén a föld felső rétegében 30°C-os termálvíz található, azonban ebből jelenleg csak 60 PJ nyerhető ki és hasznosítható energetikai célokra. (Erdődi, 2012)

Ezen korlátok ellenére hazánk világvizsgolyatban is rendkívül előkelő helyet foglal el a geotermikus energiát hasznosító országok rangsorában. A természeti adottságainak (3 vulkán) köszönhetően az élen Olaszország áll. Törökország a második, míg Magyarország a 2010-es termelési adatokat figyelmebben véve a 23. helyet foglalja el, amely mindenképp figyelemreméltó, hiszen hazánk mérete töredéke más országok területének. (Energy Market Price, 2013) 2013-ban
Magyarország az ötödik helyen állt az EU-s országok rangsorában, azonban a megközelítőleg azonos méretű országok közül csupán Portugália termelési volumene haladta meg teljesítményünket (EUROSTAT, 2016b). Jelentős az USA nyugati térségének is a földhő-hasznosítási potenciálja. (Hand et al., 2012)

Hazánk jelenleg is kiemelkedő teljesítményében nagy szerepet játszik, hogy az országgyűlés 2012-ben felfüggesztette a termálvíz visszasajtolását. Ez azt jelenti, hogy a termelőknek nem kell visszasajtoló kutat építenie, ami egyben milliós nagyságrendű megtakarítást is jelent. Ennek legnagyobb jelentősége a fürdőturizmusban és az üvegházi zöldsétermesztésben mutatkozik, ahol évente mintegy 10.000.000m³ termálvizet nyernek ki. (Rumpler, 2014)

Hazánk megújuló energiaszerkezetében a biomassza képvisei a legnagyobb arányt. A biomassza megjelenési formái rendkívül változatosak, hiszen a biomassza alatt „a szárazföldön és vízben található, összes élő és nemrég elhalt szervezet tömegét, a mikrobiológiai iparok termékeit, a transzformáció után (ember, állat, feldolgozó iparok) keletkező valamennyi biológiai eredetű terméket, hulladékok értjük”. (Lukács Gergely, 2010a, 53. oldal) A Magyarországon energetermikai célokra hasznosított biomassza volumene nemzetközi szinten nem tekinthető relevánsnak. E tekintetben a német energiaszektor teljesít a legjobban az EU országait tekintve. Magyarország e statisztikákban a középmézöny végén foglal helyet. Figyelembe véve az ország méretét, a lényegi előrelépés nem tekinthető reális célnak (Energy Market Price, 2013, EUROSTAT, 2016b) annak ellenére, hogy biomassza előállítására és hasznosítására fókuszálunk, illetve hogy biomassza-potenciálunk is meghaladja a 200 PJ-t. (HITA, 2012) Ahhoz, hogy előrelépjünk a rangsorban, a 2010-ben realizált közel 19%-os hasznosítási arányt számottevően növelni kellene.

A korábban bemutatott energiaforrásokon felül a szakirodalom említést tesz még a fotoelektromos (fotovoltaikus) energiáról és a mozgási energia is egyre nagyobb szerepet kap.

A zöldenergia ugyan képes visszaszorítani Magyarországg energiafüggőségét, ellenben egy regionális vagy centralizált energiapolitika csak abban az esetben lehet sikeres, amennyiben ezen energiaforrások hasznosítása mellett figyelembe veszik az energiafogyasztás racionalizálását is. Magyarország példáján keresztül bemutatva, éves szinten csökkent a felhasznált energia mennyisége és nőtt a megújuló energiaforrások részaránya, azonban ha e két részadatot egymás mellé állítjuk, megállapítható, hogy szinte egyáltalán nem változott a környezetbarát energia termelési volumenünk.
2.2. A Biomassza-hasznosítás, mint a „zöld ország” kialakításának alappillére

A biomassza hasznosítása több évszázados múltra tekint vissza. A XIX. század elején sokkal inkább jellemző volt a természeti tényezők középpontba helyezése, mint napjainkban, ezáltal a biomassza energetikai hasznosítása is meghatározó szerephez jutott.

A modernizáció kezdetével a természetes környezettel ápolt viszony lassan változásnak indult. A belsőgésű motorok, a repülőgép és az egyéb technológiai vívmányok megjelenésének következtében ugrásszerűen megnőtt a fosszilis energiaforrások iránti kereslet a működtetésükhöz szükséges energiaigény okán.

A szénvegyületek elterjedése egyben az ÜHG-emisszió nagymértékű növekedését is okozta. (Popp, 2014) A biomassza energetikai hasznosítása nem újkeletű, hanem tulajdonképpen azon folyamat visszafordítását jelenti, amely az 1800-as évek elején indult el.

Hazánk energiaszerkezetében a biomassza rendelkezik a legnagyobb részaránytal a megújuló energiaforrások közül, éppen ezért erre célszerű összpontosítani.

2.2.1. A biomassza kategorizálása

Ahogy azt a 7. ábra is mutatja, a biomassza, mint energetikai célú alapanyag, csoportosítása számos rendezési elv alapján történhet, azonban mindezek közül leggyakoribb a halmazállapot szerinti kategorizálás.

![Diagram](image)

7. ábra: A biomassza alapú energiaforrások és azok hasznosítása

Forrás: Gergely – Magda S. (2011)
Globális szinten tekintve a biomasszát jellemzően fűtés során hasznosítják. A megtermelt hőenergia kétharmadát a háztartások hasznosítják. Mindemellett az ipar is jelentős mennyiségű alapanyagot hasznosít. (IEA, 2008a) A szakemberek az ezredforduló könyékén úgy gondolták, hogy habár a biomassza dominanciaja megmarad, részaránya a megújuló energiaforrásokon belül visszaesik. (IEA, 1998) 2005-ben globális szinten 12,7% volt a megújuló energiaforrások részaránya, amelynek 78,6%-át a biomassza energetikai hasznosítása adta. (IEA, 2008b) A megújuló energia egy adott országon belüli térnyeresének egyik legfontosabb feltétele, hogy ismernünk kell annak az országnak az adottságait, termelési lehetőségeit. Hazánk a következő potenciálokkal rendelkezik:

- szilárd (tűzeléstechnikai): 188 PJ/év;
- elsőgenerációs bioetanol alapanyag: 70 PJ/év;
- biogáz: 25 PJ/év;
- biodízel alapanyag: 20 PJ/év. (Nemzeti Fejlesztési Minisztérium, 2012a)

Látható tehát, hogy hazánkban a szilárd biomassza rendelkezik a legnagyobb potenciállal. Habár a bioenergia összkapacitása 250-300 PJ körül mozog, hazánkban az évente hasznosított összes megújuló energiaforrás mennyisége még a 100 PJ-t sem éri el.

2.2.1.1. Szilárd biomasszák

A szilárd halmazállapotú biomassza keletkezése szerint lehet elsődleges, másodlagos és harmadlagos biomassza.

- Elsődleges biomassza: a természetes élővilág részei, mint például a mezőgazdasági növények, az erdők, a rétek, a vízben élő növények.
- Másodlagos biomassza: az állatvilág, illetve az állattenyésztés fő- és melléktermékei, valamint hulladékai.

A szilárd halmazállapotú biomasszák esetében leggyakrabban alkalmazott kategorizálás szerint megkülönböztetünk fás- és lágyszárú energianövényeket. Jellemzően a fásszáruak csoportjába a fafélék és a cserjék, míg a lágyszárú növények kategóriájába a szántóföldi növények tartoznak. Az energianövények sokszínűsége azt is eredményezi, hogy az eltérő természeti adottságokhoz igazodva minden régió számára adottak azon fásszáru növények, amelyekkel optimalizálható az energiatermelés.

Ahogy azt a 3. táblázat is mutatja, az energetikai célra hasznosítandó fák telepítésénél számos szempontot figyelembe kell venni. A táblázatban megnézve tulajdonságok együttesen erősé
befolyásolják a hozamot. Ezen tulajdonságok a vágásforduló időtartama szerint váltakoznak. A várható energiamennyiség többek között függ a talaj humusztartalmától, a vízkapacitásától és a tápanyag-ellátottságától. Természetesen mindemellett szem előtt kell tartani a talaj sótartalmát, átlagos pH-értékét és a régió átlaghőmérsékletét. (Juhos et al., 2012) Az adottságok figyelembevételével minden esetben kiválasztható a régió számára legideálisabb faj.

3. táblázat: Az energiaerdőt képező fák osztályozása vágásforduló alapján

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Vágásforduló megnevezése és időtartama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINI 1-3 év</td>
</tr>
<tr>
<td>Kezdeti beruházás / eszközjegyz</td>
<td>Jelentős</td>
</tr>
<tr>
<td>Keletkezett új munkahelyek száma</td>
<td>Alacsony</td>
</tr>
<tr>
<td>Tőkemegtérlés</td>
<td>Gyors</td>
</tr>
<tr>
<td>Fűzőttők</td>
<td>kedvezőtlen</td>
</tr>
</tbody>
</table>

Forrás: Lukács Gergely, 2013

Három, energetikai célra is hasznosított fajat hazánkban az akác, a fűz és a nyár. Az elsősorban sík területeken fellelhető akác vágásfordulója 2-5 év, míg évente 5-10 t/ha hozamot is elér. (EMERGIA, s.a.a) Az alacsonyan fekvő területeken az akác mellett fűzekkel is találkozhatunk, hiszen az akár 20-25 m magasra is megnövő fák legnagyobb hozamot a 400 méter alatti szinten biztosítják (35 t/ha/év). Az akáccal és a fűzzel szemben a nyárra leginkább a 700 méter feletti területen termeszthető. Habár jelentős hozammal rendelkezik (20-25 t/ha/év), rendkívül nagy környezeti igényessége miatt termesztése hazánkban nem jellemző. (Liebhard, 2009, EMERGIA, s.a.a) Az 4. táblázat összefoglalja az akác, a fűz és a nyár legfontosabb tulajdonságait.

4. táblázat: A fásszárú energianövények tulajdonságai

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Akácsfa</th>
<th>Fűzfia</th>
<th>Nyárfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magasság (m)</td>
<td>20 – 25</td>
<td>20 – 25</td>
<td></td>
</tr>
<tr>
<td>Telepítési lehetőség (m)</td>
<td>–</td>
<td>< 400</td>
<td>< 700</td>
</tr>
<tr>
<td>Talaj iránti igényesség</td>
<td>nem igényes</td>
<td>igényes</td>
<td>igényes</td>
</tr>
<tr>
<td>Vágásforduló (év)</td>
<td>2 – 5</td>
<td>10 – 15</td>
<td>3 – 4</td>
</tr>
<tr>
<td>Típus (vágásforduló alapján)</td>
<td>MINI</td>
<td>Rövid</td>
<td>MINI</td>
</tr>
<tr>
<td>Hozam (t/ha/év)</td>
<td>5 – 10</td>
<td>35</td>
<td>20 – 25</td>
</tr>
<tr>
<td>Jelentősége hazánkban</td>
<td>jelentős</td>
<td>jelentős</td>
<td>nem jelentős</td>
</tr>
</tbody>
</table>

Forrás: Liebhard, 2009, EMERGIA, s.a.a alapján saját szerkesztés

„Dendromassza alatt az összes erdei, fűszeres anyagot értjük.” (Braun, 2013, 22. oldal) Ezek alapján tulajdonképpen a biomasszák nagy része dendromassza, ugyanis az energetikailag hasznosított alapanyagok erdészletekből származnak, ipari felfeldolgozás hulladékai (fűrészpor, faapríték) vagy ipari melléktermékek (pellet, brikett) részét képezik. (Braun 2013) A dendromassza közvetlen hatásai közé tartozik az energiafelhasználás hatékonyásának növelése és az energiaköltségek csökkentése, míg a környezetvédelmi és egészségügyi tényezőkön
keresztül közvetve is befolyásolja a gazdaság működését. (Barkóczi, 2009 Az 5. táblázat szerint a dendromassza-típusok tulajdonságai meghatározzák azok alkalmazási területét.

5. táblázat: A dendromassza-típusok alkalmazási területei, előnyei és hátrányai

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Előnyök</th>
<th>Hátrányok</th>
<th>Alkalmazási terület</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tűzifa</td>
<td>Könnyen kiszámítható égesi tulajdonság</td>
<td>Kitermelése törvényileg korlátozva van</td>
<td>Nagy erőművek</td>
</tr>
<tr>
<td></td>
<td>Lakosság számára egyedi fűtésre szolgálhat</td>
<td>Nehezen automatizálható fűtőberendezés</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elősegíti az energiahatékonyságot</td>
<td>Alacsony hasznosítási hatékonyság</td>
<td>Egyedi fűtés</td>
</tr>
<tr>
<td></td>
<td>Könnyen tárolható</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faapriték</td>
<td>A berendezéshez kapcsolt tárolóval megoldható a tárolás</td>
<td>Az aprítás villamos energiát igényel</td>
<td>Nagy erőművek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magas kőregtartalom esetén magas a hamutartalom</td>
<td>Falu-fűtőmű, távhő</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siürűbb karbantartást igényel</td>
<td>Központi fűtési rendszer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nehézkes alapanyag-ellátás</td>
<td>Egyedi fűtés</td>
</tr>
<tr>
<td>Apadék</td>
<td>Az erdőben maradó fakészlet hasznosul</td>
<td>Munkaigényes</td>
<td>Nagy erőművek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elégtelen tisztítottság esetén tüzeléstechnikai gondok</td>
<td>Falu-fűtőmű, távhő</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magas kőregtartalom</td>
<td>Központi fűtési rendszer</td>
</tr>
<tr>
<td>Mellőktermék</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A keletkezés helyszínén lehet hasznosíthati</td>
<td>Az automatizálás aprítás után valósítható meg</td>
<td>Nagy erőművek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Falu-fűtőmű, távhő</td>
</tr>
<tr>
<td></td>
<td>Minimális átalakítás szükséges</td>
<td></td>
<td>Központi fűtési rendszer</td>
</tr>
<tr>
<td>Brikett</td>
<td>Nagy térfogat-sűrűség</td>
<td>Jelentős mennyiségű energiát igényel</td>
<td>Egyedi fűtés</td>
</tr>
<tr>
<td></td>
<td>Gazdaságosabb szállítás és tárolás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pellet</td>
<td>Nagy térfogatsűrűség</td>
<td>Jelentős mennyiségű energiát igényel</td>
<td>Falu-fűtőmű, távhő</td>
</tr>
<tr>
<td></td>
<td>Gazdaságosabb szállítás és tárolás</td>
<td>Felhasználása esetekben égőfejét igényel</td>
<td>Központi fűtési rendszer</td>
</tr>
<tr>
<td></td>
<td>Automatizálhatóság</td>
<td>Az alapanyag szállítása költséges</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ára kétszerese a tűzifáéknak</td>
<td>Egyedi fűtés</td>
</tr>
<tr>
<td>Elhasznált fa</td>
<td>Emisszió csökkentése</td>
<td>Be kell gyűjteni</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Veszélyes anyagokat tartalmazhat</td>
<td>Nem jellemző a felhasználása</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energetikai hasznosításhoz égetőműre van szükség</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aprítás szükséges</td>
<td></td>
</tr>
<tr>
<td>Fásszári energiaüzlet-vény</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gépesíthető telepítés, gondozás</td>
<td>Max. 8-10 t/ha/év kihozata</td>
<td>Nagy erőművek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parlagon hagyott terület használható</td>
<td>Az ültetvényeknek és a fellevőpiacnak egyszerre kell létesülne</td>
<td>Központi fűtési rendszer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Munkahelyteremtő-hatás</td>
<td>Költséges a talaj tápanyag-visszapótlása</td>
<td>Falu-fűtőmű, távhő</td>
</tr>
</tbody>
</table>

A lágyszárú energianövények megjelenési formája rendkívül változatos. Ezek közül mindenképp említést érdemel az energiafüvet, a cirok és a sida.

Az energetikai célra termesztett fűfélék között a "Szarvasi-1" energiafüvet előkerülő helyen szerepel. Janowszky J. – Janowszky Zs. olyan energiafüvet nemesítettek Szarvason, amely számos előnyös tulajdonsággal rendelkezik. A 10-15 éves élettartammal rendelkező energiafüggetlenül a környezeti tényezőkkel szemben, jelentős fűtőértékekkel rendelkezik (14-17 MJ/kg szárazanyag) (EMERGIA, s.a.b) és termesztése gazdaságos. (Lukács Gergely, 2012a)

A cirok, mint lágyszárú energianövény több előnyös tulajdonsággal is rendelkezik. Többek között azért előnyös alkalmazása, mert nem rendelkezik nagy igényekkel; elviseli a szárazságot és megelőzi a közepes, vagy annál rosszabb minőségű termőtalajon is. Optimális esetben célszerű a cirokot magasabb átlaghőmérsékletű helyen termeszteni, ugyanis a cirok melegkedvei elhanyagolóvá válnak. Alkalmazása ellen szól, hogy munkaigényes növény, ugyanakkor a termesztése nem igényel újabb beruházást, hiszen a munkafolyamatok elvégzéséhez a gabonafélék esetében alkalmazott munkagépekkel. (Pál, 2010)

A sida egy széleskörűen elismert, Észak-Amerikából származó, bokor jellegű évelő növény. Általában magassága az első év végén 60-90cm, de később elérheti 2,5-4m-es magasságot is. Akár 20-30 évig is megel. Kémiai tulajdonságai közül kiemelendő, hogy nedvességtartalma nagyon alacsony, mindössze 16-25%. Energetikailag kifejezetten kedvező tulajdonságai, hogy egy hektáron mintegy 30-120 ezer től is termeszthető. Telepítése leginkább azért előnyös, mert nem kíván extra körülményeket, sem hőmérséklet, sem talaj szempontjából. A betakarítás során jelentős mennyiséggel lehet számolni; 9-25 t/ha/év. (Balogh – Rompasek, s.a.a, b, c).

Általánosságban az évelő növények mellett szól, hogy nagyobb gyökeres eresztének és kevesebb tápanyagot igényelnek, mint a nem-évelő növények. Mindebből az is következik, hogy termesztésüköz kevesebb műtrágyára van szükség, ami nagy anyagi terhet és energia-befektetést jelent a vállalkozók számára. (Bucsky, 2014)
2.2.1.2. Bioüzemanyagok

A közlekedés részaránya jelentős hányadot képvisel a globális energiafelhasználásban (lásd: 2. ábra), egyre nagyobb figyelem háral a fosszilis energiaforrásokat tartalmazó üzemanyagok kiváltására. Tekintettel arra, hogy a folyékony biomassza (bioetanol, biodízel) alkalmas a környezetterhelő üzemanyagok okozta negatív hatások enyhítésére, évről-évre nagyobb szerephez jutnak.

Brazília világkereskedelmi helyzetét nem csak az USA-val folytatott külkereskedelem erősíti, hanem az a tény is, miszerint a bioetanol előállításának önköltsége a dél-amerikai országban a legalacsonyabb. Popp (2008) Mindezek ellenére Brazília etanolgyártásra vetített jövőképe negatív, hiszen a piaci szereplők által eltérően értelmezett szabályozások gátolják a nyersanyagok energetikai hasznosítását. (B. Horváth, 2014b)

Világkereskedelmi szinten érvényesülő látvak a kereslet törvénye, hiszen míg egyes országokban (pl.: Németország, Ausztrália) drágább a bioüzemanyag előállítása, addig a kereslet is elmarad az Egyesült Államok keresletétől. (IEA, 2004)

Termelési kapacitásokat tekintve az EU legnagyobb lehetőséggel rendelkező országa Franciaország, hiszen 2014-ben mintegy 2100 millió hektoliter kapacitással rendelkezett, szemben a németországi és a brit 1000 millió hektoliterével. Hazánk az éves 500 millió hektoliters kapacitással az elemzett országok között a 8. helyen található, megelőzve Svédországot és Ausztriát. (agrarszektor.hu, 2016)
A hazai piaci szereplők kételeknek az etanol előállítására alkalmas nyersanyagok, azon belül is a kukorica energetikai hasznosíthatóságában. A gazdaságossági és a környezeti tényezők miatt fontos mielőbb megoldást találni a kukorica hasznosítására vonatkozó attitűd javítására, hiszen annak megvalósulása esetén folytatódhatna az E85 elnevezésű bioüzemanyag térhódítása. (Zöldtech, 2014b) Feltehetően, az etanolt a közeljövőben is a hagyományos üzemanyaghoz keverik és így hozzák forgalomba, azonban a hosszabb távú cél az lenne, hogy önálló üzemanyag-forrássá váljon. (Popp, 2014)

A biodízel az olajtartalmú növények kémiai átalakításából származó energiaforrás. Habár előállítása során termelődött fölőslég hasznosul az élelmiszeriparban, a nyersanyagok energetikai célú felhasználása nem jelentős, mivel nehezebben gyullad. (Lukács Gergely, 2009)

Biodízel előállításban világszinten Németország a legkiemelkedőbb, azonban az Egyesült Államok és Brazília termelése is igen jelentős. (Lampe, 2008) A 2008-as gazdasági válság fluktuációit okozott a biodízel világpiaći árában, azonban a biodízel piaci pozíciójában a legnagyobb változást a hagyományos üzemanyag árának drasztikus csökkenése jelentette. (Szendrényi, 2010)

A biodízel árában bekövetkező változás mértéke elmarad az olaj árának fluktuációjától, éppen ezért a megújuló energiaforrásokba invesztálók számára csökkenni fog a viselt kockázat. (Fodor, 2012) A fosszilis alapanyagokból előállított olaj árának változása a kereslet árral fluktuálnak és a környezeti feltételek megsértésével vezethető vissza. (Hwang et al., 2010) Előrejelzések szerint a biodízel ára jelentősen csökkenni fog, azonban a világpiacon meghatározó országok köre várhatóan nem fog változni. (OECD-FAO, 2012)

Hazánk elsősorban a napraforgó és a repce egyre növekvő hasznosításán keresztül stabilizálhatja piaci pozícióját a biodízel termelésében (Erdődi, 2012), azonban az energiaszerkezetben belüli részaranya így is messze elmarad 1%-tól. (HITA, 2012)

2.2.1.3. Biogáz

A biogáz olyan energiaforrás, amely előállításához három feltétel együttes teljesülésére van szükség:

- hasznosítható szervesanyag, mint nyersanyag;
- legyen az adott nyersanyag elzárva oxigéntől;
- szükséges a metanogén baktériumok jelenléte. (Lukács Gergely, 2009)

2.2.2. Biomassza és más megújuló energiaforrások fogyasztási trendje

6. táblázat: Az Európai Unió tagországokban természeti erőforrásokból előállított energia fogyasztása (PJ)

<table>
<thead>
<tr>
<th>Ország</th>
<th>Szilárd biomassza + megújuló hulladék</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vízenergia</td>
</tr>
<tr>
<td>BUL</td>
<td>29,6</td>
</tr>
<tr>
<td>CRO</td>
<td>15,9</td>
</tr>
<tr>
<td>CYP</td>
<td>0,6</td>
</tr>
<tr>
<td>CZE</td>
<td>65,3</td>
</tr>
<tr>
<td>EST</td>
<td>25,0</td>
</tr>
<tr>
<td>HUN</td>
<td>35,3</td>
</tr>
<tr>
<td>LAT</td>
<td>49,5</td>
</tr>
<tr>
<td>LTU</td>
<td>33,7</td>
</tr>
<tr>
<td>MAL</td>
<td>0,0</td>
</tr>
<tr>
<td>POL</td>
<td>172,6</td>
</tr>
<tr>
<td>ROM</td>
<td>131,2</td>
</tr>
<tr>
<td>SLO</td>
<td>19,7</td>
</tr>
<tr>
<td>SVK</td>
<td>15,4</td>
</tr>
</tbody>
</table>

Forrás: EUROSTAT, 2016abcde alapján saját szerkesztés

A kelet-európai térségben, a hazánkkal együtt vagy később csatlakozó országok között Lengyelország és Románia aggrgált éves teljesítménye meghaladta a 200 PJ-t (ami megfelel a teljes magyar megújuló energiafelhasználási térkép által megadottanak). Ez a mennyiség messze túlszármazik a kelet-európai országok által termelt zöldenergia mennyiségét.

Mindkét országban kiemelt figyelmet szentelnek a biomassza energetikai felhasználásának. A termelési volumen alakulását nagyban megmagyarázza, hogy e két ország rendelkezik a legnagyobb népességgel és területtel a térségben. Ebből következően, EU-s szinten csupán a lengyel energiaszektor teljesítménye tekinthető relevánsnak.

Az ország méretének figyelembe vétele mellett is kijelenthető, hogy a lengyel és a román piac működése intenzívnek tekinthető. A cseh és a lett energia termelési szintje kialakult 2004-ben, azonban e két ország területe miatt nem tud nagy mennyiségű zöldenergiát előállítani, mint a román és a lengyel energia termelők.

A biomassza vonatkozásában a német és a francia energetikai szektor teljesít a legjobban, míg a kelet-európai régióban a lengyelek az elsőszámú bioenergia-termelők. Az elemzett időszakban lényegi változások nem történtek; a termelési volumen folyamatos emelkedésének köszönhetően továbbra is változatlanok az országok között megfigyelhető arányok.

Hazánk a térség országait figyelembe véve biomassza felhasználást tekintve javított pozícióján az elemzett időszakban, de a nagy országok továbbra is több energiát fogyasztanak megújulókra alapozva. Ez többek között annak köszönhető, hogy a magyar lakosság a legnépesebb országok lakosságának csupán töredéke. [6. számú melléklet] Az integrációban tapasztalt szerkezeti változás azért érdemel figyelmet, mert az országok közötti relációk döntő mértékben nem változtak meg.

A fásszárú biomasszból és a megujuló hulladékóból előállított energiafelhasználásban megfigyelhető trendeket a 8. ábra szemlélteti.
8. ábra: Az EU tagországok szilárd biomassza és megújuló hulladékok energetikai felhasználására vonatkozó trend 2004-2013 között

Forrás: EUROSTAT, 2016c alapján saját szerkesztés

A 2004-2013-as időszakban minden ország felhasználása nőtt valamelyest, azonban egyes országok éves fejlődési üteme oly cserekénynek bizonyult, hogy statisztikailag nem nevezhető relevánsnak (2%-nál kisebb fejlődés évente).

Kiemelkedőnek számítanak azon országok, amelyek évente átlagosan legalább 10%-kal növelték a szilárd biomassza és a megújuló hulladékokra alapozott energiafogyasztásukat. Hazánk előrelépése e téren kiemelkedő, ugyanis a vizsgált időszakban 8%-os évenkénti bővülés mutatkozott meg.

Az EU viszonylatában vizsgálva a nagyobb népességű országok jellemzően legalább 200 PJ energiát használtak fel 2013-ban, fejlődésük azonban igencsak eltérő. Az olaszok megényszereztek, míg az angolok 150%-kal növelték energiafogyasztásukat 2004 és 2013 között. A nagy országok között a svéd és a német szektor fejlődése lassabb volt, azonban a románok nem csak a fejlődést tekintve, hanem a fogyasztás volumenét figyelembe véve is elmaradtak az előbb említett országoktól (Romániá a közepes volumen elnevezésű kategóriában kapott helyet, vagyis fogyasztása 100 és 200 PJ közé esett a 2013-as év során). Kiválóan teljesített a belga, a holland, a cseh és a dán piac, így pozíciójuk egyértelműen erősnek tűnik. Mindezek mellett a 2013-as adatok, valamint a megfigyelt trend alapján kirajzolodó látszik, hogy mely országok maradnak le a felhasználást tekintve. Ezen országok a 8. ábra bal alsó síknegyedében foglalnak helyet.
A vízenergia felhasználásában 2004-ben élenjáró svéd 260 PJ-nál is több energiát fogyasztottak; ennek mennyisége 2013-ra mintegy 15%-kal csökkent. Az ország elveszítette piacvezető szerepét, mivel Svédországban 15%-kal esett vissza a hasznosított vízenergia mennyisége, illetve ezzel párhuzamosan Franciaország felhasználása közel 20%-kal növekedett. Hazánk a vízenergia-hasznosítást tekintve az Európai Unió tagállamai, illetve a térség országaik között felállított rangsor második felében foglal helyet. [6. számú melléklet]

A szélenergia hasznosítását tekintve az EU-s országok két kategóriába sorolhatóak; egyes államok szinte egyáltalán nem foglalkoznak szélenergia-hasznosítással, míg más államok egyre nagyobb mértékben növelik felhasználásukat. A spanyolok fogyasztása közel négyszeresére emelkedett és ezzel a 2013-as adatok alapján az EU legnagyobb fogyasztóiává léptek elő. A német szélenergia is jól teljesített, azonban a fejlődés ellenére „csak” a második helyet foglalják el az EU-ban.

Hazánk tendenciájában nem figyelhető meg releváns változás; továbbra is azon országok közé tartozunk, amelyek fogyasztása nemzetközi összevetésben statisztikailag nem számottevő. [6. számú melléklet]

Tekintettel arra, hogy a legtöbb ország nem foglalkozik a földhő hasznosításával, a geotermikus energia piaca a leginkább koncentrált piaci szerkezettel rendelkező sektor. 2004-ben az olasz lakosság fogyasztása a teljes EU-s fogyasztás 92%-át adta, míg ez az arány 2013-ra 85%-ra esett. Hazánk ugyan ötödik az EU28 országait tekintve (a térségben első), azonban a hasonló népességgel és területtel rendelkező országok közül csak Portugália teljesített jobban a geotermikus energia felhasználásában. [6. számú melléklet]

Globálisan vizsgálva az adatokat megfigyelhető, hogy a megújuló energiaforrásokban élen álló EU tagországok (Ausztria, Svédország és Finnország) megújuló energiaszerkezetet hasonló. Mind a három államnak kétpólosú az energiamixe. Az elsődleges energiaforrás mindhárom országban a biomassza, míg a második legjelentősebb megújuló energiaforrás a víz. (EUROSTAT, 2015cd) Ezen három ország példája aláímasztja, hogy minden kapacitást ki kell aknáznai annak érdekében, hogy megóvjuk környezetünket, és ebben nagy szerepet kap a vízenergia felhasználása is.

2.2.3. A biomassza energetikai felhasználásának ellátási lánca

Chikán (2008, 181. oldal) az ellátási lánccal alatt „a gazdasági tevékenységek vertikálisan összekapcsolódó, vállalati határokon átívelő, adott fogyasztói igény kielégítését célzó” sorozatát érti. E definíció értelmezése általánosságban azt mondhatjuk, hogy az ellátási lánccal foglalja a termék létrejöttétől a véghasználásig kiterjedő összes tevékenységet. Zöldenergetikai szempontból ez a fogalom tartalmazza a biomassza előállítását, a szántóföldről és/vagy az erdészetekről való elszállítását (Dinya, 2010), valamint zöldenergiává való átalakítását és a lakosság felé szolgáltatott energiamennyiség végfelhasználását. A sikeres ellátási lánccal kiépítéséhez szükség van egyrészt a jó tárolási feltételekre, másrészt kiváló logisztikára, osztott hálózatra, valamint kiemelkedő infrastruktúrára. A fenntarthatóság csak abban az esetben valósulhat meg ezen lánccal mentén, ha az energiatermelés részegységei, valamint a termelési/elosztási tevékenységet végzők is integráltan kapcsolódnak össze (Dinya, 2010).

2.2.4. A biomassza energetikai felhasználásának előnyei és hátrányai

A megújuló energia mellett számos érv szól, ugyanakkor adódnak olyan pontok is, amelyek fejlesztésén dolgozni kell. A megújulók SWOT-elemente alapján a következőket jelfektetjük ki:

- **erősség:** munkahelyteremtés, energia és energiahordozók importjának csökkenése, hazai innováció növekedése;
- **gyengeség:** bonyolult jogi háttér, a fosszilis energiaforrások erős támogatottsága, a meglévő hálózat adaptációjának szükségessége;
- **lehetőség:** kedvező hazai energetikai célú lehetőségek, szigorodó klímapolitika, emisszió-csökkentés, technológiai fejlődés, EU-s kiotói mechanizmusból származó források;
- **kockázat:** finanszírozási források hiánya, fosszilis energiahordozók tényleges ára. (Nemzeti Fejlesztési Minisztérium, 2012a)

A megújuló energiaforrások SWOT-analízise körvonalazza a biomassza energetikai hasznosításának előnyeit és hátrányait, melyet a 7. táblázat szemlél. Habár a biomassza nagyobb volumenű felhasználásával elsősorban a környezet megóvása a cél, mégis számos területen kihat a gazdaságra és a helyi közösségekre is.
7. táblázat: A biomassza energetikai hasznosításának legfontosabb előnyei és hátrányai

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Előnyök</th>
<th>Hátrányok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imporťfüggőség csökkenése</td>
<td>Jelenleg magas a beruházási költség</td>
</tr>
<tr>
<td></td>
<td>Korábban nem hasznosított hulladékok kereskedelmi forgalomba kerülnek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatékonyabb energia-előállítás</td>
<td>Magas tárolási költség</td>
</tr>
<tr>
<td></td>
<td>Termelési költségek csökkenése</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logisztikai költségek csökkenése</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energiatermelés decentralizálódása</td>
<td>Munkaigényes részfolyamatok</td>
</tr>
<tr>
<td></td>
<td>Stabilabb energiarendszer</td>
<td></td>
</tr>
</tbody>
</table>

Gazdasági

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Előnyök</th>
<th>Hátrányok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jövedelmet biztosít a háztartások számára</td>
<td>Szakemberhiány és ingázás</td>
</tr>
<tr>
<td></td>
<td>Jelenleg az újonnan keletkező munkahelyek száma</td>
<td>Korlátozott munkahelytűk foglalkoztatása</td>
</tr>
<tr>
<td></td>
<td>H átrányos helyzetűek foglalkoztatása</td>
<td>Alacsonyan képzettek szezonális foglalkoztatása</td>
</tr>
</tbody>
</table>

Munkaerő-piaci

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Előnyök</th>
<th>Hátrányok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Társadalomba való integrálódás esélye</td>
<td>Az elektromágneses terek egészségére gyakorolt hatása kérdéses</td>
</tr>
<tr>
<td></td>
<td>Elősegíti a vidék életszínvonalának emelkedését</td>
<td>Az életszínvonal nem emelkedik annyira, hogy fizetőképes kereslet termelődjön</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Előnyök</th>
<th>Hátrányok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emisszió csökkenése</td>
<td>A jelenlegi társadalmi attitűd nem megfelelő</td>
</tr>
<tr>
<td></td>
<td>Égéshez kevés levegőre van szükség</td>
<td></td>
</tr>
</tbody>
</table>

Mindezek a tényezők lényegesen befolyásolják a jelenbeli tendenciákat, valamint a jövőbeni beruházások alakulását, ezáltal pedig nagyban befolyásolják azt, hogy milyen környezettel kell szembenéznie a következő generációknak.

2.3. Munkaerőpiaci folyamatok – foglalkoztatottság és munkanélküliség

Az elméleti közgazdaságtan számos szempontból elemzi a munkaerőpiacot, amelynek egyik alapvető feltevése, hogy a vállalatok tevékenységükhoz inputokat, azaz termelési tényezőket használnak fel. A munkaerő alkalmazása egyike a négy termelési tényezőnek. (Kopányi – Pétró – Vági, 2005) az alkalmazott munkaerő mennyisége a termelési függvényen keresztül behatárolja az adott vállalat termelési lehetőségeit. (Varian, 2012)
A munkavállalók számának, összetételének nemzetgazdasági szinten való mérése az alapvető makromutatók közé sorolható. A munkaképes korú lakosság (15-64 év közöttiek) két részre oszthatóak; az aktívakra és az inaktívakra. Az aktív lakosságon belüli munkanélküliek aránya, valamint a foglalkoztatottak száma központi szerepet kap az országok fejlettségére vonatkozó elemzések során. (Ehrenberg – Smith, 2008)

2.3.1. Munkaerőpiac a gyakorlatban

Az országos szintű munkaerőpiac a nemzetgazdaság ágazati adataiból tevődik össze. A foglalkoztatási témájú elemzések elvégzését komparatív módon, rátaik alkalmazása mellett célszerű megvalósítani. A munkanélküliségi ráta az előbbiekből kiindulva gyakran adja a komparatív munkaügyi elemzések alapját. Az elemzés köre gyakran eltérő, azonban Magyarország vonatkozásában egyrészt az EU tagállamai között végzett felmérések lehetnek az irányadók a foglalkoztatási piac hatékonyságára vonatkozóan, másrészt pedig a régi országainak idősor-alapú elemzése adhat információt arról, mennyire kedvező, avagy kedvezőtlen a hazai mutató értéke. Ez utóbbit mutatja be a 9. ábra.

* A 2015-ös adatok évközi adatok, országonként eltérő időpontokra vonatkozóan

Forrás: EUROSTAT, 2015e, Trading Economics, 2015
Az EU integráció országaiiban a 2008-as gazdasági és pénzügyi válság bekövetkezése előtt számottevően kedvezőbb volt a foglalkoztatási helyzet, mint a 2013-as évben. Az integráció országainak foglalkoztatási piaca igen nagy változásokon mentek át, hiszen az elemzők 5 év alatt 7% és 330% közötti változásokat realizálhattak. A historikus adatok arra engednek következtetni, hogy az EU tagországai között a német munkaerőpiac a legstabilabb, mivel a 2013-as munkanélküliségi ráta alacsonyabb volt, mint az 5 évevel az előtti. A globális válság hatásait leginkább megérző országok Görögország, Spanyolország és Ciprus volt, ahol a munkaerőpiac stabilitását mérő makromutató 2008 óta a többszörössére emelkedett. [7. számú melléklet]

A hazánkban végememt munkaerőpiaci változások kevésbé tekinthetőek drasztikusnak más országokhoz viszonyítva, hiszen az EUROSTAT adatai alapján 7,8%-ról „csak” 10,2%-ra emelkedett a munkanélküliségi ráta. A KSH (2015b) negyedéves adataiból világosan látszik, hogy az állástalanok aránya ciklikusan változik a negyedévek között. Minden év első részében magasabb munkanélküliségi rátát tapasztalhatunk, míg az év közepére egyre növekvő foglalkoztatottságot is jelent a lakosság számára. Szezonális hatás érvényesült a 2013-as évben is, amikor az első három hónapban számított munkanélküliségi ráta 11,8% volt, míg az októberrel kezdődő utolsó negyedévében csak 9,1%. A változást jelentő 2014-es évben az első negyedéves adat 8,1% volt, amely hosszú időre visszatekintve a legkedvezőbb érték hazánkra vonatkozóan. A Business Europe 2015-re 9,5%-os munkanélküliségi rátával kalkulált, ami elemezve az utóbbi évek folyamatait, egyértelműen teljesíthető cél is. (MTI, 2014b) Az előrejelzések a ténypadatokhoz viszonyítva nem hogy túlzottan optimisták, sokkal inkább túl szerények bizonyultak. A 2015. év első negyedévében a 7,8%-nál, amely 1,3 százalékponttal kedvezőbb adat, mint a tárgyévet megelőző év azonos időszakában. (KSH, 2015b)

Az évek során végememtő kevésbé kedvező folyamat hátterében egyrészt a népesség demográfiai megoszlásának változása, másrészt a közmunkaprogram elterjedése áll. A népességfogyás azt is eredményezte, hogy a munkaképes korú lakosság összlétszáma csökken, ugyanakkor a gazdasággilag aktívak részaránya nőtt. Hazánkban az aktivitási ráta egyre magasabb szintet ért el, de így is messze elmarad az EU átlagától. 2010 és 2015 között a foglalkoztatottak száma mintegy 450 ezer fövel növekedett, ugyanakkor a munkanélküliek száma csupán 150 ezer fövel esett vissza. (KSH, 2015b)

A közmunkaprogram a munkaerő-kínálat és -kereslet könnyebb találkozását célozza meg, amelynek köszönhetően látványosan csökken a munkanélküliségi ráta, míg növekszik a foglalkoztatottak száma. Ugyan a program rövidtávon kedvezően hat a gazdaságra, de az elsődleges munkaerőpiacra növekszik a munkaerő-kereslet, amely a közmunkaprogram fokozatos kivezetését irányozza elő. (Világgazdaság Online – MTI, 2015)
A gyorsjelentések egyre pozitívabb képet festenek a hazai munkaerőpiacról. A 2014-es év a munkanélküliségi ráta további csökkenését, míg a foglalkoztatottak számának további emelkedését hozta. Az aktivitási ráta is folyamatosan emelkedik, erősítve ezzel az utóbbi években érvényesülő trendet. (KSH, 2015b)

A 10. ábra alapján kijelenthető, hogy 2010 és 2015 között az országban egyre magasabb bérekkel számolhattak a munkavállalók.

[10. ábra: Magyarországon érvényesült bérek 2010-2015 között (Ft)
Forrás: Központi Statisztikai Hivatal, 2015c]

közmunkások száma folyamatosan emelkedik, egyre nagyobb súlyval kerülnek számításba a makroszintű kereset meghatározása során. (MTI, 2014c)

Az előzetesen kalkulálható kereseti lehetőségek eltérnek az ország egyes régióiban. A fővárosban dolgozó alkalmazottak átlagosan mintegy 300 ezer forintot keresnek havonta, addig a legszegényebb régiókban a bruttó fizetés 200 ezer forint alatt van. (Suhajda, 2014)

A bérek eltérése nem csak területi szinten jelentkezik, hanem adott szektorban is jelentős a bérek szórása az egyes pozíciók között. Faragó P. (2014) szerint a gyorsjelentések sokszor nem tekinthetőek hitelesnek, ugyanis a kommunikált adatok semmilyen adatot nem szolgáltatnak bérek terjedelmére, eloszlására vetítve. Az erre vonatkozó adatok a 8. táblázathoz hasonló módon kommunikálhatóak.

8. táblázat: Magyarországi bérek eloszlása 2000-2010 között (ezer forint / év)

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>2000</th>
<th>2004</th>
<th>2008</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 (alsó decilishez tartozó jövedelmi adat)</td>
<td>389</td>
<td>542</td>
<td>744</td>
<td>729</td>
</tr>
<tr>
<td>D3 (3. decilishez tartozó jövedelmi adat)</td>
<td>405</td>
<td>575</td>
<td>925</td>
<td>925</td>
</tr>
<tr>
<td>D5 (5. decilis, vagyis a medián adatpont)</td>
<td>1150</td>
<td>1925</td>
<td>2625</td>
<td>2575</td>
</tr>
<tr>
<td>D9 (felső decilishez tartozó jövedelmi adat)</td>
<td>1650</td>
<td>2775</td>
<td>3750</td>
<td>3750</td>
</tr>
<tr>
<td>P99 (A legfelső percentilisbe tartozáshoz szükséges minimális jövedelem)</td>
<td>4875</td>
<td>7750</td>
<td>10250</td>
<td>10250</td>
</tr>
<tr>
<td>F (asszimetria-mutató)</td>
<td>-0.207</td>
<td>-0.239</td>
<td>-0.252</td>
<td>-0.222</td>
</tr>
</tbody>
</table>

Forrás: Bálint, 2012 alapján saját szerkesztés

Véleményem szerint mindezek egyben azt is jelentik, hogy habár az átlagfizetés kedvezőnek tűnik, az adatok eloszlása miatt magas a leszakadók aránya, ebből következően sok háztartás életszínvonalai olyannyira alacsony, hogy már az alapvető élelmiszerek és az energia biztosítása is nehézséget okoz.

2.3.2. A biomassza energetikai hasznosításához kapcsolódó munkaerőipac sajátosságai

A biomassza megítéléseinek szempontjából nagyon fontos annak munkahelyteremtő képessége. Annak ellenére, hogy a múltbeli adatokból már lehet következtetni (Piac & Profit, 2014a), egyelőre nincsenek pontos számadatok arra vonatkozóan, hány főt képes foglalkoztatni a szektor, csupán becslések és elemzések körvonalazzák a munkaerőigény nagyságát.

Az országok adatain alapuló statisztika szerint a legtöbb munkavállalót Kína foglalkoztatja a biomassza piacán. Az ázsiai országban több mint 2,6 millió főt alkalmaztak a 2013-as év folyamán. Ifj. Chikán (2014) becslése szerint idehaza alig 8-10 ezren dolgozhatnak ezen a területen, és ebben már minden technológia teljes értéklánca benne van a rendszertervező mérnöktől a szántóföldön mezőgazdasási mellékterméket begyűjtő munkásig.

A biomassza energetikai hasznosításának térnyerése szerkezeti változásokat eredményezhet. A változások következtében számos munkahely jön létre, azonban arról sem szabad megfeledkezni, hogy sok munkahely meg is szűnik, elsősorban a hagyományos iparágakban. A szakértők jelentős többsége egyetért abban, hogy a keletkező munkahelyek száma messze túlhaladja a megszűnő állásokét. (Brence, 2010) A 9. táblázatból is egyértelműen látható, hogy egyelőre kiszámíthatatlan, mikor és milyen volumenben fognak létrejönni azon munkahelyek, amelyek az új energetikai paradigma által keletkeznek a megújuló energiaforrások energetikai hasznosításának vonatkozásában.

9. táblázat: A megújuló energiaforrások energetikai hasznosítása által keletkező munkahelyek számára vonatkozó becslések

<table>
<thead>
<tr>
<th>Kutatást készítő szerv / személy</th>
<th>Kutatás dátuma</th>
<th>Kutatás hatóköre</th>
<th>Keletkező munkahelyek száma (előre jelzett adat, fő)</th>
<th>Az előrelézés esedékessége</th>
<th>Kutatást ismertető szervezet / személy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Európai Bizottság</td>
<td>2009</td>
<td>Zöldenergia</td>
<td>24 000*</td>
<td>2020</td>
<td>Szendrényi</td>
</tr>
<tr>
<td>Német tanulmány</td>
<td>2011</td>
<td>Megújuló energia</td>
<td>110 000</td>
<td>2025</td>
<td>Energiacentrum</td>
</tr>
<tr>
<td>KRF</td>
<td>2011</td>
<td>Fásszárá növények</td>
<td>100 000</td>
<td>2015</td>
<td>Magda S. – Bíró B.</td>
</tr>
<tr>
<td>V. Németh (Magyar Fenntarthatósági Csúcs 2014 konferencián)</td>
<td>2014</td>
<td>Megújuló energia (EU)</td>
<td>3 000 000</td>
<td>2020</td>
<td>Piac & Profit</td>
</tr>
<tr>
<td>Energia[Forradalom]</td>
<td>2015</td>
<td>Megújuló energia</td>
<td>20 000 000</td>
<td>2015-2030</td>
<td>Greenpeace</td>
</tr>
</tbody>
</table>

*becsült adat

A fenti táblázat értelmében számos tanulmány próbálja megbecsülni a létrejövő munkahelyek pontos számát, azonban ezen elemzések összehasonlítása rendkívül nehézkes, mivel más régióra, szektorra és időpontra vonatkoznak az előre jelzett adatok.

Egyes becslések szerint az ÜHG-emisszió csökkenésének köszönhetően a megújuló energiaforrások ágazata EU-szinten akár 3 millió embert képes lenne foglalkoztatni. (Piac&Profit, 2014a) Az IEA kalkulációi szerint 2020-tól kezdve az energiaiparban csökkenni fog a keletkező munkahelyek száma. (Greenpeace, 2015b)

Véleményem szerint leginkább az IEA előrejelzése adhat reális képet a munkahelyek számára vonatkozóan, azaz belátható időn belül csökkenni fog a szektor munkaerőigénye. Egyetértek továbbá Koltai (2011) álláspontjával is, miszerint a megújuló energiaforrásokhoz szükséges paradigmaváltás csupán nagy nehézségek árán fog megvalósulni.

A bioenergia foglalkoztatást növelő hatása számos szinten jelentkezik. Ezek közül a kiemelkednek a következők:

- K+F;
- marketing;
- logisztika;
- tudásközvetítés;
- zöldenergia-hordozó fás- és lágyszárú növénytermesztés;
- lakossági/üzemi/közületi felhasználás;
- klaszterirányítás.

Lukács Gergely (2010c) - koncepciója alapján ugyan látható, hogy számos területen van szükség új munkaerőre, de az is jól látható, hogy az előbb megnevezett területek jellemzően a magasan kvalifikált munkavállalók munkaerőpiaci keresletét képesek felszívni.

A biomassza energetikai hasznosításához számos területen szükség van alkalmazottakra. A munkát vállalók száma mellett a foglalkoztatási piac másik kitüntetett kérdésköré az alkalmazottak béreze. Tekintettel arra, hogy a zöldenergia jelentősége a szegényebb rétegeknek számára bár kiemelt jelentőséggel; ígér stabil munkahelyet, illetve az életszínvonaluk emelkedését is prognosztizálja, célszerű nagy figyelmet fordítni arra, hogy az iskolázatlanok milyen munkakörök betöltésére alkalmasak és ott milyen bérek mellett tudnak munkát vállalni.

Az erőművekben számtettevően több évtizedes tapasztalattal rendelkező energetikai szakemberek dolgoznak, azonban egyes munkakörök betöltésére alacsonyabbak kvalifikált embereket is foglalkoztatnak. Az üzemekben tapasztalható bérszakadék igen nagy. Farkas és Faragó P. (2012a) szerint hozzávetőlegesen hétszeres bérrrel kalkulálhat a legjobban kereső a legalacsonyabb keresettel rendelkezőkhoz képest. Véleményük szerint az iskolázatlanok számára jobban megéri nem dolgozni és segélyekre,támaszkodva elni, mint az általuk megtapasztalt alacsony bérr mellett munkába állni. Mindez egyben azt is jelenti, hogy van egy rezervációs bérük, amely mellett hajlandóak belépni a foglalkoztatási piac kínálati oldalára.
2.4. Stratégia és versenyképesség

A stratégia és a versenyképesség összefonódása a XX. század elejére tehető. Azelőtt a stratégia szót egészen más megközelítésből használták. Elsőként mintegy 2000 évvel ezelőtt Sun Tzu foglalkozott a stratégiával, akkor még hadászati területre specializálva. A „The art of war” című könyve a mai napig alapműnek számít (Marosán, 2001), azonban a stratégia és a vállalatgazdaságtan egymáshoz való közeledésével mára már az országok, a vállalatok versenyképességét döntően befolyásoló tényezőjeként tekintenek a stratégiára.

Jelenleg Porter (1993, 17. oldal) tekinthető a modern stratégiai gondolkodás egyik úttörőjének. Véleménye szerint a versenystratégia "megmondja, hogyan versenyezzen a vállalat, milyen célokat tűzön ki, milyen politikára lesz szüksége a céljai eléréséhez."

A versenyképesség fogalma mindaddig megfoghatatlanabb bizonyul, míg annak számértékét, vagy valamilyen összehasonlítási alapot nem adunk. A múltban számos olyan mutatót fejlesztettek ki, amelyeknek célja a versenyképesség méretétővé tétele volt. Az egyik legösszetettebb makroszemléletű indikátort a svájci székhelyű World Economic Forum (WEF) nevéhez fűződik. A GCI (Global Competitiveness Index) magában foglalja a mikro- és a makroéretelemben vett versenyképességet is; közel 150 ország esetében kerül kiszámításra.

Előnye a ténylegesen mutatott nagyfokú komplexitás, tekintettel arra, hogy a GCI három alindexből tevődik össze, amelyek a következők:

1) alapvető követelmények;
2) hatékonyság növelői;
3) innováció. (Szentes, 2012)

A három alindex lényegében a vizsgált ország versenyképességét tökéletesen leírják, azonban mindegyik pont továbbontható pillérekre. A GCI-index 12 pillérből áll. Magában foglalja:

- az intézményrendszert;
- az infrastruktúrát;
- a makrogazdasági környezetet;
- az egészségügyet;
- az oktatási rendszert;
- az árupiac működését;
- a munkaerőpiacot;
- a pénzpiac fejlettségét;
- technológiai innovációs befogadó készséget;
- a piacok méretét;
- az üzlet finomultságát és;
- a tényleges innovációt. (Branyiczki, 2012)
A tizenkét alappillér mindegyike kap egy pontszámot az 1-7 intervallumon belül. Ezek összegzéséből jön ki a GCI-pontszám. (Schwab, 2012)

2.4.1. Az EU és Magyarország versenyképessége

Tekintettel arra, hogy a külföldi befektetők elsősorban a nemzetgazdaságra vonatkozó jelentésekre hagyatkozva határozzák meg döntéseiket, mindenképp szem előtt kell tartani a versenyképesség pozitív irányú változását. Hazánk számára mindenképp fontos lenne a működő tőke beáramlása, hiszen ez fellendítené a magyar gazdaságot. Ehhez pedig az kell, hogy a vállalkozók portfoliójukat térben és időben úgy diverzifikálják, hogy annak hatása legyen a magyar piacra. Nem csak más országok potenciális invesztorai tekintik alappillérnek a versenyképességi mutatókat, hanem a mindenkori kormány, vagy adott ágazat is számos döntést alapoz ezen indikátorra. Mivel a legösszetettebb jelzőszám a GCI, ezért célszerű annak elemzésével szemléltetni az integráció, a régió és persze hazánk versenyképességét.

Tegyük fel, hogy az EU28 tagállamok GCI-értékből átlagot vonunk. Ebben az esetben az európai piac a gazdaságiilag nagyhatalomnak számító országokhoz viszonyítva kevésbé kompetitív. Az így képzett GCI-mutató alacsonyabb az USA, Japán, az Egyesült Arab Emírátus és Kína versenyképességi értékénél is. Továbbá az is figyelemre méltó, hogy a bővítési hullámok és az integráció fejlődése hogyan befolyásolta a versenyképességi makromutatót. Ha a 2012-2013-as viszonyzásot vesszük alapul és azokra végezzük el az átlagszámítást, akkor az EU6 által felügyelt közös piac erősebb lenne, mint a kínai és az arab nemzetgazdaság. Versenyképességünk alapján közel hasonló gazdasági jelentőséget érnének el, mint az amerikai és a japán nemzetgazdaság. Az elsőként csatlakozó országok (Dánia, Egyesült Királyság, Írország) fejlettebbek voltak, mint a Benelux-államok és Olaszország, Franciaország, Németország együttse, ezért az EU9 gazdasága még ütőkésebb gazdaság lenne, mint az 1957-ben alapítóként csatlakozó államok által létrehozott belső piac. A 80-as évektől csatlakozó államok mind egyre gyengítik az összpiai versenyképességét, hiszen a GCI-mutatójuk elmarad az EU átlagától. [8. számú melléklet]

A régióban a legszámottevőbb pozitív változások a török piacon mentek végbe, amelynek köszönhetően egyrészt 16 hellyel előrebb lépett, másrészt kompetitívebb lett, mint Magyarország. A nemzetgazdaság pozíciójának erősödése magával vonta a nemzetgazdasági ágazatok fejlődését is. Az egyes ágazatok csak akkor lehetnek versenyképessebbek, ha az egész ország is annak bizonyul. Ennek tükrében célszerű a magyar adatokat mélyebben is elemezni, amelyet a 10. táblázat mutat be.

10. táblázat: Magyarország GCI-mutatója - pillérenkénti felbontásban, 2012-2013, 2016-2017

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>2012-2013 Pontszám</th>
<th>Rangsor</th>
<th>2016-2017 Pontszám</th>
<th>Rangsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. alindex: Alapvető követelmények</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. pillér: Intézmények</td>
<td>3,7</td>
<td>80</td>
<td>3,3</td>
<td>114</td>
</tr>
<tr>
<td>2. pillér: Infrastruktúra</td>
<td>4,3</td>
<td>67</td>
<td>4,2</td>
<td>62</td>
</tr>
<tr>
<td>3. pillér: Makrogazdasági környezet</td>
<td>5,2</td>
<td>44</td>
<td>5,1</td>
<td>47</td>
</tr>
<tr>
<td>4. pillér: Egészségügy és alapfokú oktatás</td>
<td>5,9</td>
<td>51</td>
<td>5,6</td>
<td>78</td>
</tr>
<tr>
<td>II. alindex: Hatékonyság növelői</td>
<td>4,3</td>
<td>52</td>
<td>4,3</td>
<td>56</td>
</tr>
<tr>
<td>5. pillér: Felsőoktatás és –képzés</td>
<td>4,7</td>
<td>49</td>
<td>4,4</td>
<td>72</td>
</tr>
<tr>
<td>6. pillér: Az árupiac hatékonysága</td>
<td>4,3</td>
<td>67</td>
<td>4,4</td>
<td>59</td>
</tr>
<tr>
<td>7. pillér: A munkaerőpiac hatékonysága</td>
<td>4,3</td>
<td>79</td>
<td>4,1</td>
<td>80</td>
</tr>
<tr>
<td>8. pillér: A pénzpiac fejlettsége</td>
<td>4</td>
<td>72</td>
<td>4,0</td>
<td>70</td>
</tr>
<tr>
<td>9. pillér: Technológiák befogadásának készsége</td>
<td>4,4</td>
<td>49</td>
<td>4,5</td>
<td>54</td>
</tr>
<tr>
<td>10. pillér: A piac mérete</td>
<td>4,3</td>
<td>52</td>
<td>4,3</td>
<td>53</td>
</tr>
<tr>
<td>III. alindex: Innováció</td>
<td>3,7</td>
<td>58</td>
<td>3,4</td>
<td>97</td>
</tr>
<tr>
<td>11. pillér: Üzleti kifinomultság</td>
<td>3,7</td>
<td>86</td>
<td>3,5</td>
<td>113</td>
</tr>
<tr>
<td>12. pillér: Innováció</td>
<td>3,6</td>
<td>37</td>
<td>3,2</td>
<td>80</td>
</tr>
</tbody>
</table>

ÖSSZESEN

4,3 60 4,2 69

Forrás: Schwab, 2012, 2016 alapján saját szerkesztés

Összességében az innováció tekintetében vagyunk a legversenyképesebbek (37. hely). Ezzel szemben 86. helyet tudhatjuk magunknál az üzleti kifinomultság és 80. helyet pedig az intézmények tekintetében.

A leginkább kedvező értéket felvevő alindex a „hatékonyság növelői”. Ezen kategóriába tartozó pillérek közül erősségünk a felsőoktatás és a technológiai iránti érdeklődésünk (49. hely), míg komparatív értélemben a munkaerőpiac működik a legrosszabbul (79. hely)

A versenyképességi mutató alapján az utóbbi években egyre hátrább csúszunk a ranglistán. 2011-ben még 48., öt év múlva már csak 69. helyet foglaljuk el. Magyarország több ok miatt rontott a pozícióján. A legközvetlenebb ok, hogy abszolút értékben is csökkent a GCI, hiszen míg 2012-ben 4,3 volt, addig 2016-17-ben ez csak 4,2.

Sun Tzu a „The art of war” című művében leírta, hogy fő erőinket célszerű odahelyezni, ahol erősségeink vannak és ellenfeleiink sebezhetőbbek. Az integráció országaikhoz viszonyítva abban nyilvánul meg versenyelőnyünk, amiben az országok közötti rangsorban a legjobban helyen szerepelünk a GCI-mutató alapján. A disszertáció elsődleges elemzési időszakát (2010-2013) szem előtt tartva, a 12 pillért végigtanulmányozva ez a pillér az innováció. Következésképpen olyan ágazatokra kell összpontosítanunk, ahol az innovatív megoldások kapnak kiemelt szerepet. A zöldenergia térnyerése szabad teret enged a forradalmi újjászoknak; azaz az innovációknak.

A stratégia, a versenyképesség és a core competence fogalma az utóbbi időszakban egyre jobban összefonódott. A core competences (lényegi képességek) "a vállalatok számára fenntartható versenyeleányt biztosító sajátosság képességek." (Chikán, 2008, 538. oldal) Sun Tzu stratégiai definíciója alapján fontos megtalálnunk azokat az előnyöket, amelyeknek következtében egy adott viszonylatban döntő fölényt tudunk kialakítani a konkurenseinkkel szemben, ezáltal biztosítva a nagyobb versenyképességet a belföldi vállalatok számára. Emellett az is nagyon fontos, hogy a stratégia alapjául szolgáló core competence, mint tényező hozzájáruljon a szükségeletek magasabb szintű kielégítéséhez, így növelve fogyasztók hasznosságéretét. (de Vit – Meyer, 2004)

A gyakorlatban, a lényegi képesség jelentősége már a nemzetgazdasági szinten is egyre értelmezhetőbb fogalomma nőtt ki magát. Magyarország nemzetközi szintéren mindenképp kis országnak számít, amelynek többek között az a következménye, hogy nem rendelkezünk olyan erőforrásokkal, amelyek segítségével a termékek és szolgáltatások széles spektrumában legyünk világszinten is ütköpes ország. Döntenünk kell arról, hogy mely képességekre építsük nemzeti stratégiánkat. (Hoványi, 2005)

Az energiafelhasználás forradalmi változásokon fog átesni, így hazánk számára is adott a kihívás a versenyképesség fenntartásának érdekében. Hosszabb távon a megujuló energiaforrások átrajzolhatják a világ és Európa térképét. A pozitív változások reményében egy minden szinten kiváló és megvalósítható ágazati stratégiát kell létrehozni és megvalósítani, amely segít kiemelni országunkat a középmezőnyből.

A core competence kiépítése olyan teljes körű elemzést kíván, amely elfogulatlanul veszi figyelembe hazánk negatív vonásait is, politika, gazdaság, társadalom, vagy épp a technológia szintérén. A reális kép kialakításában nagy segítségünkre lehet a GCI-index, annak minden részadata és minden olyan hazánkat érintő pozitív vagy negatív hangvétel elemzés, amely a továbbiak alapjául szolgálhat.

Végezetül, a core competence kiválasztásánál nagyon fontos, hogy a szakértők konszensusra jussanak. A nemzeti stratégia kidolgozása során több egymást kölcsönösen kizáró elkötelezés született a core competence vonatkozásában; így alapozták a hosszú távú stratégiát a gyógyturizmusra, a Kert-Magyarországra és még számos képességre. (Hoványi, 2005) Emellett, jellembeli vonás miatt fontos az egyetértés a felelősök körében, hogy az adott stratégiát következetesen valósítsák meg.

Véleményem szerint a stratégia körvonalainak meghatározásánál alapként szolgálhat a WEF kimutatása, valamint jól hasznosítható Sun Tzu koncepciója. Úgy gondolom, címszerű a konkurens országaik szemben fennálló versenyeleányünket kihasználni és az innovációra helyezni a hangsúlyt. Tekintettel arra, hogy az oktatási rendszer terén erős lemaradásaink vannak, kívánatos lenne ezt orvosolni. Az innovatív, tudásintenzív ágazatok adhatják a core competence alapját. Logikusnak látszik a döntés, hogy hazánk versenyképességének alapjául a megújuló energiaforrásokat válasszuk, tekintettel arra, hogy minden olyan versenyképességi elvet kielégít, amely a sikeres ország jövőjét megalapozhatja.
2.4.3. A bioenergia térnyerésének várható hatása a versenyképességre

Ahhoz, hogy hazánk versenyképes országgá váljon, mindenkiépp szükséges egy hatékony, importfüggőségtől mentes energiarendszer kiépítése. A jelenlegi energiaigényt többségében a behozatal fedezi, azonban ha a bioenergia részaránya jelentősen növekedne, az önállósodáson keresztül egyre jobb pozíciót foghatna el az országok közötti versenyképességi rangsorban.

A fásszárú energianövények termesztése és energiahordozáskénti feldolgozása képes csökkenteni a helyi kistérségek elmaradottságát. Ezen közegek bioenergia hasznosításba fektetett munkája mindenkiépp kifizetődőnek látszik, amely jelen állapotok szerint csupán az önkormányzatok szintjén tűnik megvalósíthatónak.

A jövő energiastratégiájának versenyképességre gyakorolt hatása többek között azon múlik, hogy mennyire vagyunk képesek az elmaradott térségek hátrányait kiküszöbölni. Világszinten kiemelten fontos megemlíteni az árányokat és az egyes termékek árának időbeli alakulását. 2013 óta drasztikusan csökkent az olaj világpiaci ára, amelyből a nyersanyagszegény országok lakossága lényegében semmit nem érzékel az árak rugalmatlansága és a magas jövedéki adó miatt. Ez a folyamat megváltoztatta az országok versenyképességét, s mivel az USA adja a világszintű termelés jelentős részét, az ország kompetitívábbé vált. (GYDT, s.a.)

Az előrelépéshez a társadalom minden csoportjának összefogására van szükség. A kevésbé fejlett térségek felzárkóztatása és a decentralizáltság egymástól elválaszthatatlan. A tudatos helyi gazdasági fejlesztések alappilléreként a lokális munkahelyek létesítését kell meghatározni, amely többek között a feldolgozás és az értékesítés függvényének. Ennek érdekében maximálisan ki kell használni a térség adottságait és el kell nyerni a potenciális befektetők bizalmát is. (Nagyné Demeter et al., 2012) A szakemberek együttetővé véleménye alapján a lokális rendszerek kiépítése akkor valósítható meg, ha a községek helyben előállított energiát használnak fel a tevékenységekhez. (Dupcsák – Kere – Marselek, 2012)

Az elméleti megközelítéseket és elgondolásokat többek között a Heves megyei Nagyréde példája is szemlélte a gyakorlatban, nevezetesen, milyen változásokat eredményezhet egy, az önkormányzat által is támogatott innovatív elképzelés megvalósítása. A település közintézményeiben alkalmazott tüzelőberendezések névleges teljesítménye 821kW, amely magában foglalja a polgármesteri hivatal, az iskola, a művelődési ház, a bölcsőde és a sporttöltők energiaigényének biztosítását is. A jellemzően fahulladékok elégítésével energiát biztosító közüzem energiafelhasználása ugyan magasabb, azonban a hazánk létesítése mindenkiépp cselekvésbeli bizonyítéka annak, miszerint Nagyréde a bioenergia alkalmazásán keresztül kíván az önállósodás és a decentralizált energiaszektor felé vezető útra lépni. (Gergely – Nagy, 2012a)

Arra a kérdésre, hogy miért lenne előnyös egy decentralizált rendszert kiépíteni, a következő pontok egyértelműen választ adnak:

- A jövőbeli beruházások tőkeigénye alacsonyabb lehet.
- Nagyobb lehetőség lenne a dendromassza-alapú energiatermelésre és azok lakossági felhasználására.
- Lehetőség nyílik minimális veszteség mellett energiát előállítani.
• Lehetőség nyilik a térségek faalapú energiaellátására.
• A faaprítékok alkalmazásával lehetővé válik a többi megújuló energiaforrás hátrányainak kiküszöbölése.
• Alacsonyabb logisztikai költséggel lehet számolni.
• Kisebb tároló szükséges, avagy azonos térhogató tároló helység nagyobb mennyiségű energia előállítására alkalmas alapanyag tárolására lesz alkalmas.
• A humán erőforrások, mint „piaci szereplők” mindegyike helyben megtalálható, azaz lokális munkaerőt igényel az energia-előállítás.
• Függetleníti a helyi gazdaságot a fosszilis energiahordozóktól. (Barkóczi, 2009)

A fentiek figyelembevételével olyan stratégia kialakítását kell szem előtt tartani, amely egy ilyen, lokális gazdaságokon működő térségek létrehozásán alapszik.

A versenyképességi index idősoros elemzése arra enged következtetni, hogy hazánk versenyképessége egyre romlik. Annak érdekében, hogy az energiastratégiából meghatározott célok megfelelő szinten valóra válnak, egy globális paradigmaváltásra van szükség. (NFM, 2012a) A biomassza energetikai hasznosítás piacának működését erős szabályozásra szorul, valamint a kialakítani kívánt stratégiának tartalmaznia kell a lakosság alapszükségleteinek biztosítását is. (Palotai, 2015)

A 11. ábra jól szemlélteti, hogy az átfogó energiastratégia magában foglalja a gazdasági tényezők mellett a társadalmi folyamatok, valamint a környezeti tényezők javítását is.

11. ábra: Magyarország energiapratégiájának alappillérei

Forrás: Nemzeti Fejlesztési Minisztérium, 2012a
A gazdaságélénkítés egyik mérföldköve a versenyképességre gyakorolt kedvező hatás, amely a stratégia megfelelő mélységű kidolgozása után a társadalmi szempontok figyelembevétele mellett is megvalósítható.

A versenyképes stratégia nélkülözhetetlenségét bizonyítja az a tény, miszerint 2009-2013 között lényegi változás nem történt a megújuló energia termelésének volumenében. A számadatok által kimutatott fejlődés csupán illúzióknak nevezhető, ugyanis a megújulók részaránya abból kifolyólag növekedett, hogy a nemzetgazdasági szintű energiafelhasználás csökkent. (KSH, 2015a, EUROSTAT, 2015c alapján) Célom tehát a környezeti elemek figyelembe vételével mellett egy, a fenntarthatóságot szem előtt tartó szcenzárió alappilléreinek felvázolása, amely a jelenlegi látszatfejlődés felváltásán túl egy valódi zöldülési folyamat megvalósítását körvonalazza.

2.4.4. Az ökológiai lábnyom

A versenyképesség mérését szolgáló mutatók mindegyikének vannak előnyei és hátrányai is. Számos mutató gyengesége, hogy gazdasági alapokon nyugszik. A disszertáció témája – a biomassza energitermelésére – habár gazdasági vonulattal is rendelkezik, jellemzően környezeti, fenntarthatósággal kapcsolatba hozható kérdés, hiszen a fenntartható fejlődés nem csupán gazdasági vetülettel rendelkezik, hanem környezeti és társadalmi tényezőket is magában foglal. (Böhringer - Löschel, 2006)

A fenntarthatóság szellemében tehát célszerű egy olyan indikátort is alkalmazni, amely a gazdasági faktorok helyett a környezeti tényezőkre helyezi a fő hangsúlyt. Mindezen megfontolások eredményeképp a disszertáció során az ökológiai lábnyomot, mint versenyképességi mutatót alkalmaztam.

Az országok életvitelének fenntartásához bizonyos nagyságú földterületre van szükség, amely általában messze túlszárnyalja a rendelkezésre álló terület nagyságát. Ez a kedvezőtlen arány javítható az országok kölcsönös jóindulatával, a külkereskedelem helyes alapokra való helyezésével. Amennyiben e két adatból hányadost képzünk, megkapjuk, hogy ha minden ember úgy élne, ahogy ennek az országnak az állampolgárai, hány Földre lenne szükségünk az igényeink kielégítésére. Az Európai Unió tagországaira vonatkozó számlított hányadost mutatja be a 12. ábra.
Az EU28-on belül az ökológiai lábnyom mérete Belgiumban a legmagasabb, ugyanakkor szinte minden országnak nagyobb területre van szüksége igényeinek fedezésére, mint amennyi rendelkezésre áll. A gazdaságilag fejlett (versenyképes) országok igencsak eltérő helyen szerepelnek a rangsorban. Míg Németország rendelkezik a negyedik legmagasabb mutatóval, addig a finnek és a svédek ökológiai lábnyoma 1 körül mozog. Magyarország hozzávetőlegesen 3-szor annyit területet él fel, mint amennyi rendelkezésre áll.

Forrás: TOM-Agency [s. a.], One World – Nations Online [s. a.] alapján saját szerkesztés
3. ÁLTALÁNOS ÉS ENERGETIKAI KÖRNYEZETI TÉNYEZŐK BEMUTATÁSA

Minden termék/szolgáltatás vonatkozásában kiemelt jelentősége van a környezeti tényezők elemzésének. Ez hatványozottan igaz az olyan innovatív területekre, mint az energiaszektort. Ennek megfelelően a biomassza energetikai hasznosítása erős kapcsolatban áll a környezeti tényezőkkel. A sikeres stratégia felállításához sorba kell venni az alternatív energiákkal kapcsolatban álló tényezőket.

A 13. ábra alátámasztja azon eredeti elgondolást, miszerint a foglalkoztatottság és a vidékfejlesztés érdekében – amelyet a biomassza energetikai hasznosítása ígér – mindenképp szem előtt kell tartani a környezeti tényezőket.

13. ábra: A területi elmaradottság öt fő tényezője

Forrás: Káposzta, 2014

3.1. Politikai tényezők

A politikai környezet sokoldalúan befolyásolhatja a nemzetgazdaság működését. Alapvetően kétféle politikát különböztetünk meg, a fiskális és a monetáris politikát. Az elmélet szerint az előbbit az állam, az utóbbit a jegybank felügyeli, azonban ez a gyakorlatban nem mindig valósul meg. (Mankiw, 2005) A költségvetési és a monetáris politika gyakran összemosódik a valóságban, és ennek köszönhetően függ az egyik a másiktól. A gyakorlatban sokkal inkább az látszik megvalósulni, hogy a monetáris politikát is az állam kontrollálja.
A 2020-as tervek elérésében nagy szerepe van a kormányzati intézkedéseknek, melyek a Nemzeti Cselekvési Tervben az alábbi négy kérdéskörre összpontosulnak:

- Támogatási intézkedések, programok;
- Egyéb pénzügyi ösztönzők: K+F támogatása, bioüzemanyag kedvezmények…;
- Általános szabályozási, átfogó programalkotási ösztönzők (pl.: megújuló energia törvény);
- Társadalmi intézkedések: foglalkoztatás, tudatformázás. (NFM, 2012a)

Regionális szinten is született elképzelés arra vonatkozóan, miképp növelhető a biomassza részaránya. A 2030-ig felvázolt szcenárió 900 PJ éves aggregált energiafelhasználással és az észak-magyarországi régió termelési voluménének növekedésével számol. Elsősorban az égetéses biomasszákra célszerű fordítani a szabad termőterületet. Az elképzelés szerint 90 ezer hektárra van szükség, amelyet 30 ezer hektár etanoltermelésre fordított terület egészít ki, valamint az egyéb használatba venni kívánt földmotorok területe. A stratégia tervezete szerint a régió 30 PJ-hoz közelítő energiamennyiséget fog előállítani, ami 21,5 ezer munkahelyet terem. Ennek egy része az iskolázatlanok által is betöltethető pozíció, azonban a stratégia gyenge pontja, hogy az alulképzettek folyamatos foglalkoztatása csak állami beavatkozásával és munkáltatói kezdeményezésekkel valósítható meg. A régiónak a közelítő energiaelfogadása és a foglalkoztatás megvalósítása segíthet erre. Az elképzelés szerint a megvalósítás kialakítása kialakul egyik fontos frakerőforrásnak, de a stratégia motívumai és az áldozatosságra vonatkozó következményei szükségesek. (Lukács Gergely, 2013)

A fenti elképzelések megvalósításához mindenképp szem előtt kell tartani, hogy a támogatások szerepe kiemelkedően fontos egy olyan vállalkozás, vagy régió életében, amely a megújuló energiaforrások előállításával vagy logisztikájával, esetleg felhasználásával foglalkozik. Az EU célja, hogy 2018-ra a megújuló energiaszektor képes legyen a saját lábán megállni, támogatások nélkül. A jelenlegi piaci pozíciókat figyelembe véve ennek megvalósíthatósága igencsak kérdeződés, hiszen nemcsak a magyar energiaszektor alapoz erősen a támogatásokra, hanem a hazánknál sokkal előrebb tartó Németország is. Németország sem képes az egész ágazatot fenntartani központi juttatások nélkül. (MTI, 2014d) Ebből következik, hogy egy vállalat számára tevékenységi körből függetlenül fontos a támogatás. Az új projektek három forrásból tudják finanszírozni az egyes tervek megvalósítását: egyrészt az alapítók saját vagyonukat (önerő), másrészt a hitelek felvételére és állami/uniós támogatások lehívására is van lehetőség.

A csökkenő árk eredményeképpen egyre többen kezdenek bele erőműépítésbe saját forrásból (Index, 2014). Mindezek ellenére a legtöbb vállalkozás nem képes az üzleti tervét csupán önerőből megvalósítani, éppen ezért gyakran élne a támogatás adta lehetőségekkel. A nemzetgazdasági szinten is releváns projektek realizálódása hitelfelvétel nélkül szinte elképzelhetetlen.

A környezetbarát energiaforrások pozíciójának erősödését nehezíti továbbá, hogy a fosszilis energiaforrások támogatottsága globális szinten a GDP 6,5%-át teszi ki. (Vargha, 2015) Emellett a megújuló energiaforrásokra vonatkozó támogatások mértéke alacsonyak tűnik. A
támogatásokra igen nagy szükség lenne, azonban hazánkban egyelőre nem megfelelő a támogatási rendszer felépítése. A hőtermelésre fordítandó költségvetési szubvenciók kiépítése ugyan folyamatban van, ám jelen állás szerint nem tudja maradéktalanul betölteni szerepét a piacon.

A biomassza előállításával és energetikai célú hasznosításával foglalkozó vállalatok jellemzően az alábbi forrásokból hivhatnak le támogatást (Varga, 2009):

1. **Nemzeti forrású támogatások**
 - Nemzeti Energiafejlesztési Program (NEP): Energiafejlesztési Hitel Alapból a megújuló energiaforrásokat hasznosító beruházások kedvezményes hitel felvételét teszi lehetővé (Pappné Vancsó, 2010), illetve vissza nem térítendő támogatások lehívását teszi lehetővé (KHEM, 2009)
 - Zöld Beruházási Rendszer (ZBR): A Kyoto-Protokoll megkötéséből származó bevétel felhasználása (NFM, 2012b)
 - Kutatási-fejlesztési támogatások (NKTH)

2. **Közösségi (EU) támogatások**
 - SAVE I-II.: célja azon megújuló energiával foglalkozó projektek támogatása, amelyek az ésszerű energiafelhasználást állítják a középpontba (Kovács E., s. a.)
 - ALTENER: funkciója hasonló a SAVE I-II-höz
 - EU 7. Keretprogram
 - Interreg funkciója hasonló a SAVE I-II-höz
 - EMVA: A pályázati felhívás célja a vidéken felülmúló energiaszolgáltatás, amelyek keretein belül 2007-től kezdve lehetett támogatáshoz jutni olyan vállalkozások számára, amelyek elképzeléseik egyezik a pályázati alapelgondolással (EMVA Tanácsadó Iroda, 2006)

3. **Közösségi társfinanszírozott támogatások**
 - ÚMFP (NFT II.): Új Magyarország Fejlesztési Terv Környezet és Energia Operatív Programjának (KEOP) keretében megújuló energia-beruházások támogatása (Pappné Vancsó, 2010)
 - ÚMVP (EMVA): Az Új Magyarország Videkfejlesztési Program keretében az európai Mezőgazdasági és Videkfejlesztési Alapból (EMVA) 55 a fás- és lágy szárú ültetvények juthatnak pénzforráshoz (Pappné Vancsó, 2010)
 - A 2008-óta normatív területalapú támogatások nyújthatók (a Földművelésügyi és videkfejlesztési Minisztérium kezelésében) rövid vágásfordulójú fásszárú energetikai ültetvényekre (Pappné Vancsó, 2010)

Többségében hitelfelvételen alapuló vállalkozások jönnek létre, azonban a csökkenő árak és a növekvő részvényarányok miatt egyre növekszik azon piaci szereplők száma, akik nem szándékoznak hitelt felvenni. (Index, 2014) A biomassza erőművekhez hasonló vállalkozások elindítása továbbra is a támogatási rendszer sikeres működésétől függ, mivel a projekt megvalósításához milliárdos nagyságrendű invesztícióra van szükség. Ezzel szemben a lokális egységek létrehozása már nem feltétlenül lesz kiszolgáltatva a pályázási feltételek állandó változásainak.

• 255/2006. (XII.8.) Kormányrendelet a támogatások felhasználási feltételeiről;
• 281/2006. (XII.23.) Kormányrendelet a pénzügyi tranzakciók lebonyolításáról és az ellenőrzési rendszerek kialakításáról;
• 23/2007. (IV. 17.) FVM rendelet a támogatások igénybe vételének általános szabályairól;
• 27/2007. (IV. 17.) FVM rendelet az állattartó telepek korszerűsítésére igényelt támogatások alaprendelkezéseiről;
• az Európai Mezőgazdasági Vidékfejlesztési Alapból nem élelmiszeripari célú kiskapacitású, növényi alapú nyersszesz, nyersolaj előállító üzemek létesítéséhez nyújtandó támogatások részletes feltételeiről szóló 44/2009. (IV.12.) FVM rendelet;
• a 2007-2013 időszakban az Európai Regionális Fejlesztési Alapból, az Európai Szociális Alapból és a Kohéziós Alapból származó támogatások felhasználásának általános eljárási szabályairól szóló 16/2006. (XII. 28.) együttes rendelet;
• az Új Magyarország Fejlesztési Tervben szereplő Regionális Fejlesztés Operatív Programokra meghatározott előirányzatok felhasználásának állami támogatási szempontú szabályairól szóló 19/2007. (VII. 30.) MeHVM rendelet;

A KÁT 2016 áprilisától egyszerűbb, gyorsabb, átláthatóbb lesz, ugyanakkor kisebb teher hárul a bürokráciára is. Az átszervezéseknek köszönhetően az energiapiac szereplőinek költségei tovább csökkennek, amely hozzájárulhat a REZSI-költségek további mérséklődéséhez. (B. Horváth, 2016a)

A lakosság egyre nagyobb része fókuszál a környezettudatosságra, éppen ezért a megemlített támogatásokra is egyre fontosabb szerep hárul a zöldgaszdaság és -társadalom kialakításában. Az alapvető elképzelés szerint az állam és a központi szerv támogatja a környezeti törekvéseket, mégis a szélsektor társadalmi összefogás nélkül nehezebben tűnik a zöldenergia tényerését megvalósítani. A hazai gazdaság szereplői 2014-ben összesen 36,5 milliárd forinttal járultak hozzá a magyarországi zöldáram-termeléshez. (B. Horváth, 2014c)

Annak ellenére, hogy az elköteleződés biztosított, kijelenthető, hogy nem minden feltétel adott a zöldenergia térnyerése számára. Az Európai Bizottság szerint egyetlen kormány sem köteles elfogadni az importált zöldenergiát, így annak külkereskedelmi akadályokba ütközik. (Bruxinfo, 2014b)

A konfliktusok is bizonyítják, hogy fontos az államok közötti egyetértés és összedolgozás megvalósítása. A tagállamok közötti egyik leglényegesebb politikai vitapontot az Oroszországgal folytatott külkereskedelmi kapcsolatok menedzselése jelenti. A földrészén egy jelentős stratégiai töréspont mutatkozik Oroszország és az unió között. (MTI – Energiainfó, 2015b) Ez a mély, nézőpontbeli különbség előírányozza a két régió közötti versengést, amely persze megnehezíti a globális problémák kezelését.

A REKK elemzése szerint a 2020-as átállás teljesítéséhez a Nemzeti Cselekvési Tervben foglaltakon felül „extra intézkedésekre” is szükség van. Ezen intézkedések hiányában 2020-ra a tervezett energiamennyiség 23,1 PJ-lal haladna meg a tényleses felhasználást. Fontos lenne a felhasználható források tényleses lehívása, valamint a már működő erőművek bezárásának megakadályozása is. Az elemzés arra is rámutat, hogy cég szerű lenne a távhőpiac újraszabályozását elvégezni, amelyben a jelenlegi profitkorlát változna. (B. Horváth, 2016b)

A magyar támogatási rendszernek is jelentősen változnia kellene. Saját érdekünk, hogy a befektetők a zöldenergiát részesítsék előnyben a fosszilis energiahordozókkal szemben. Ha az MNB esetleges kamatmentes hitelprogramját kiterjeszténi a zöldenergia piacára is, akkor az serkentő hatással lenne a szegmensre. (Piac & Profit, 2014b)

3.2. Jogi tényezők

Egy olyan iparágban, mint az energetika, kiemelt szerep hárul az államháztartásra és a piac központi szabályozására. Gyakran nehezen választható el egymástól a politikai és a jogi környezet, éppen ezért indokoltak tűnik a standard PESTEL-elemzés sorrendjének megváltoztatása. Egy bizonyos megközelítési elv szerint a jogszabályi háttér a politikai ideológiai gyakorlati megjelenési formáit jelenti.

Cselekedeteinket a normák több irányból is korlátozzák. Egyes korlátok formálisak, míg mások informálisak. (Gyarmathy, 2015) Mindezek alapján nem csak a jogi, hanem a társadalmi szabályok betartása is korlátozza cselekvési lehetőségeinket. Az erkölcsi és a társadalmi normák gyakran informálisak, ellenben a jogi szabályok jelentős többsége írásban került rögzítésre.

A Magyarországon érvényesülő jogszabályokat erősen befolyásolja az Európai Unióban érvényesülő jogértelemzés, -alkotás, és -alkalmazás. Az integráció elmelyülésének egyik fázisa, hogy a testületek igyekeznek harmonizálni a szabályrendszeret, amely átláthatóbbá teszi egyrészt a jogi eseteket, másrészt pedig a gazdasági és egyéb folyamatokat.

Az első integrációs tervek már előrevetítettek a jogi rendszer egységesítésének gondolatát, azonban az első komoly jogszabályi harmonizációt az Amsterdami Szerződés jelentette, amelynek célja az uniós integráltságának elmélyítése volt.

Ennek előszélét a Maastrichti Szerződés aláírása jelentette, amely már alapjaiban megváltoztatta az integráció szellemiségét, tekintettel arra, hogy elmélyítette az integrációt és megteremtette a monetáris unió alapjait. (Kecskés, 2003) A kritériumok lefektetették a pénzügyi integrációba való
kerülés feltételrendszerét. Ezek a jogi rendelkezések a közéletben és a szakcsargonban a "Maastrichti Kritériumok" néven váltak ismertté.

A munkaügyeket érintő előírások gyakran az összes ágazatra azonosak, általános érvényűek; legyen szó az alkalmazás bármely attribútumáról:

- munkaidő-pihenőidő: a döntően relatív diszpozitív szabályok kiterjednek a munkaviszonyra, a munkarendre és a rendes, valamint rendkívüli szabadságra is (Dudás, 2012ab);
- munkabérrel összefüggő kérdések: a mindenkori minimálbért meg kell haladnia a javadalmasznak, legyen szó teljesítmény vagy időarányos bérelegről. (Hős, 2012)
- kártérítési felelősséggel összefüggő kérdések: a munkavégzés szakszerűségére vonatkozó, többségében relatív diszpozitív jogszabályokat tartalmazza, valamint a felek kártérítési felelősségét abban az esetben, ha munkahelyi baleset következik be. A Munka Törvénykönyvének ez a fejezete foglalkozik a kárigénylés formájával és érvényesítésével is. A munkavédelmi a szabályok be nem tartása súlyos pénzbüntetést von maga után. (Kun, 2012ab, Salgó, 2014)

3.3. Gazdasági tényezők

Minden ortodox elven működő vállalat/iparág számára kiemelkedően fontos a gazdasági környezet elemzése. Valódi fontosságát az mutatja, hogy hiába hagy fel az érintett vállalatvezető az elméleti gazdaságtanban felvázolt racionálisan viselkedő vállalat alapszellemiségével, akkor is előtérbe kerül a gazdaság, mint befolyásoló tényező. Természetesen nincs ez másképp egy olyan innovatív területen sem, mint a megújuló energiaforrások szektora.

A gazdasági trendek elemzésére több mutató is alkalmas, így például a GDP is. A Bruttó Hazai Termék többféleképpen is meghatározható, azonban a legáltalánosabban használt definíció szerint a GDP az adott országban végső fogyasztásra kerülő termékek és szolgáltatások összértékeként értelmezhető. (Mankiw, 2005)

A válság következtében az integráció szintjén a gazdasági visszaesés mértéke 4,4%-os volt, azonban voltak olyan államok is, amelyek 15%-os csökkenést produkáltak a tárgyévben. Az 1-2%-os évenkénti növekedést követően hullámzóan alakult a mutató értéke. Az integráció országainak – Lettország kivételével – gazdasága visszaesett, vagy minimális növekedést mutatott a vizsgált időszakban. 2014-re a legtöbb ország reál GDP-je növekedést mutatott.
(EUROSTAT, 2015f) Hazánk gazdasága megközelíti az előbb leírt tendenciát és 2013-ban fejlődésnek indult a gazdaság. (Napi Gazdaság, 2014) Ennek következtében Magyarországon a GDP lassú ütemben, de évek óta folyamatosan nő. A 2015-ös év az előző év azonos időszakához viszonyítva mintegy 2,5% volt a növekedési ütem, amely az alacsony inflációknak köszönhetően a reál GDP alakulásában is visszatükröződik. (KSH, 2015d)

A GDP kedvező alakulása befolyásolni képes a munkanélküliségi rátát. Okun törvénye kimondja a makroeljárművén és a munkanélküliségi ráta közötti negatív korrelációt, ezáltal nagy figyelmet kell szentelni a gazdasági felemelkedésre. (Mankiw, 2005)

A GDP alakulása nagyban függ az ártevények alakulásától. Amíg a GDP-deflátor gazdaságban betöltött szerepe elhanyagolható, addig a bázis súlyozású árindex a fogyasztói-árindex (CPI) gazdasági szerepe már sokkal jelentősebb. (Mankiw, 2005) Jelenleg az árak nem emelkednek, hanem inkább adott szinten maradnak, de esetenként még mérséklődnek is.

Az árak vizsgálatát jellemzően aggregáltan vagy árucsoportonként vizsgálják. Az energiatermelésben a villamos energia ára hosszútávon alig néhány százalékkal emelkedett. Az évenkénti átlagos 0,2-0,3%-os áremelkedés nem tükrözi a real gazdasági árrendszereben bekövetkezett változásokat. 2002 és 2008 között Magyarországon a környező országoknál is gyorsabb ütemben nőtt az energia ára, azonban az utóbbi években jelentősen megváltoztak az árak változása tekintetében. 2002 és 2013 között a korszakosan villamos energia árak gyorsan és stabilan emelkedtek, amelynek köszönhetően hazánkban nem volt lehetséges az euróba. Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

A közlekedés – az energetikai szempontból is fontos szektor – árindexei nehezen értelmezhetőek, ugyanis az árak igen labilisak. A jelenleg piacezett kőolaj világára érdemeléke és magyarországi kereskedelmi ára hónappról-hónaprára, több esetben akár hétpről-hétre változik. A volatilitás nemcsak a hazai piacon, hanem az integráció más országaira is jellemző. Az ingadozásnak számos oka ismeretes, amelyek közül az egyik az árától függetlenül. (Energiainfó, 2015)

Az árak vizsgálatát jellemzően aggregáltan vagy árucsoportonként vizsgálják. Az energiatermelésben a villamos energia ára hosszútávon alig néhány százalékkal emelkedett. Az évenkénti átlagos 0,2-0,3%-os áremelkedés nem tükrözi a real gazdasági árrendszereben bekövetkezett változásokat. 2002 és 2008 között Magyarországon a környező országoknál is gyorsabb ütemben nőtt az energia ára, azonban az utóbbi években jelentősen megváltoztak az árak változása tekintetében. 2002 és 2013 között a korszakosan villamos energia árak gyorsan és stabilan emelkedtek, amelynek köszönhetően hazánkban nem volt lehetséges az euróba. Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

A közlekedés – az energetikai szempontból is fontos szektor – árindexei nehezen értelmezhetőek, ugyanis az árak igen labilisak. A jelenleg piacezett kőolaj világára érdemeléke és magyarországi kereskedelmi ára hónappról-hónaprára, több esetben akár hétpről-hétre változik. A volatilitás nemcsak a hazai piacon, hanem az integráció más országaira is jellemző. Az ingadozásnak számos oka ismeretes, amelyek közül az egyik az árától függetlenül. (Energiainfó, 2015)

A közlekedés – az energetikai szempontból is fontos szektor – árindexei nehezen értelmezhetőek, ugyanis az árak igen labilisak. A jelenleg piacezett kőolaj világára érdemeléke és magyarországi kereskedelmi ára hónappról-hónaprára, több esetben akár hétpről-hétre változik. A volatilitás nemcsak a hazai piacon, hanem az integráció más országaira is jellemző. Az ingadozásnak számos oka ismeretes, amelyek közül az egyik az árától függetlenül. (Energiainfó, 2015)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

A közlekedés – az energetikai szempontból is fontos szektor – árindexei nehezen értelmezhetőek, ugyanis az árak igen labilisak. A jelenleg piacezett kőolaj világára érdemeléke és magyarországi kereskedelmi ára hónappról-hónaprára, több esetben akár hétpről-hétre változik. A volatilitás nemcsak a hazai piacon, hanem az integráció más országaira is jellemző. Az ingadozásnak számos oka ismeretes, amelyek közül az egyik az árától függetlenül. (Energiainfó, 2015)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)

Az árindexekem nem csak a piaci mechanizmusok, hanem gazdaságpolitikai tényezők közvetítésével alakul ki. Ezt bizonyítja, hogy a REZSI-csomag újrat kínálni a gazdaságot az energiatermelési árak is mérséklődött. (MTI – Energiainfó, 2015c)
Az MNB kimutatása alapján az euró árfolyama a válságot megelőzően 250 Ft körül alakult, azonban a 2008 ösze drasztikus változásokat hozott. Ahogy az árfolyamrendszer, úgy a válság is nagy hatással volt az árfolyamra. Kisebb-nagyobb ingadozások után az euró forintban kifejezett értéke stagnálni látszik a 305-315 Ft-os intervallumban. Ugyan a 2015-ös év sem volt mentes az árfolyam-ingadozásoktól, mégis a kilengések sokkal kisebbek voltak, mint a korábbi években. (Napi Árfoylam, 2015)

14. ábra: Az euró árfolyama (Ft / €)

Forrás: Magyar Nemzeti Bank, 2015
A szakemberek úgy gondolják, érdemes zöldenergiába fektetni, ugyanis gazdasági és környezeti hatása igen pozitív, az állam támogatással javítja a vállalat működési feltételeit, továbbá középhosszú távon megtérül a befektetett összeg, miközben a rizikófaktorok alacsonyak. (Világgazdaság, 2015b) A válság kitörése óta évről-évre kevesebb az energetikai beruházások összértéke, amelyet a 11. táblázat is jól szemléltet.

11. táblázat: Az energetikai beruházások alakulása 2010-2013 között

<table>
<thead>
<tr>
<th>Év</th>
<th>Energetikai beruházások</th>
<th>Nemzetgazdasági beruházás</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milliárd forint</td>
<td>Változás (Előző év=100%)</td>
</tr>
<tr>
<td>2010</td>
<td>246,7</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>235,1</td>
<td>95,30%</td>
</tr>
<tr>
<td>2012</td>
<td>147,9</td>
<td>62,90%</td>
</tr>
<tr>
<td>2013</td>
<td>138,7</td>
<td>93,80%</td>
</tr>
</tbody>
</table>

Forrás: Energiainfó, 2014 alapján saját szerkesztés

A 2010-es év közel 250 milliárd forintos invesztíciónia után a 4,7%-os, 37,1%-os és 6,2%-os csökkenés következtében már csupán 137,1 milliárd forintot fektettek be az iparágba. Megjegyzendő, hogy az energiaszektor recessziója intenzívebbnek bizonyult, mint az egész nemzetgazdaságból tapasztalt csökkenés.

15. ábra: A beruházási igények várható alakulása 2030-ra

Forrás: Nemzeti Fejlesztési Minisztérium, 2012a

Az NFM, elemzésében a megújuló energiaforrások jövőbeni beruházási költségalakulását vetítette előre, 2010-es bázisévet alkalmazva. Akár a pesszimista, akár az optimista jövőképet
vesszük alapul, a beruházási költségek várhatóan csökkennek, ezzel pedig elősegítik az új erőművek és más zöldenergiát előállító/forgalmazó gazdasági egységek létrejöttét, amely hozzájárulhat egy decentralizáltabb energiaszektort kialakulásához.

Ugyan a tendencia kedvezőnek mondható, hosszútávon semmiképp sem szabad ebből messzemenő következtetéseket levonni. A gazdasági felemelkedést külső tényezők is lehetővé tették, így amennyiben azok nem alakulnak hazánk számára kedvezően, valószínűleg újra egy visszaeséssel kell szembenéznünk. (MTI, 2015b) Tehát, a gazdasági konjunktúra fenntarthatósága jelen állapotban, döntő részben nem a saját kezünkben van.

Egyes elképzelések, felmérések szerint a megújuló energiaforrások részaránya 2050-re akár 100% is lehet, valamint lényegesen csökkentheti a szén-dioxid emissziót. (Greenfo, 2015) Ezzel összhangban Kaposvár célja is az, hogy a város energiaellátását teljes mértékben a zöldenergia hasznosításra alapozza. Kaposvár számára ez egyben az energetikai függetlenséget is jelentené. (Kapospont, 2014) A város energiafúggőségének csökkenése egyben elősegítené a hazai energiaszektort decentralizálódását is.

3.4. A társadalmi tényezők

A biomassza energiacélú hasznosításának foglalkoztatási vetülete közvetlenül a társadalmi folyamatokhoz kapcsolható. A foglalkoztatás bővítésére olyan tényezők hatnak, amelyek együttesen lehetnek döntőek hazánk számára az energiapiaci versenyképességet illetően.

Az aprófalvak és az elmaradtott térségek mindennapjaiban az életminőség, mint társadalmi és szociológiai jelenség, kiemelt fontossággal rendelkezik. A munkalhetőségeken túl figyelmet kell fordítani az alapvető szociális szükségletek biztosítására, így a megfelelő mennyiségű és minőségű ivóvízre és élélmiszerre, valamint a kellemes környezetre. (Gergely – Magda S., 2011)

A munkaerőpiaci folyamatok döntően befolyásolhatja a munkaerő-kínálat nagyságá. A legutóbbi népszámlálás adatai alapján az összlakosság 10 millió fő alá csökkent, amely egyben a potenciális foglalkoztatottak csökkenését vetíti előre. (KSH, 2015f) A népességcsökkenés hatása hosszútávon fog realizálódni, ugyanis mintegy 15 év múlva lényegesen kevesebb friss munkaerő fog belépni az álláskeresők közé, ezáltal csökkentve a munkakínálatot.

A társadalomban, habár mindenki egyenlően születik, az eleve elrendelés elve működik. A javak és a kereset alapján végzett kategorizálás szerint a felső decílis havi bevétele többszöröse az alsó tízdecile viszonyítva, míg a lakások felszereltsége között is jelentős eltérések mutatkoznak. (KSH, 2013ab) Emellett egyes etnikumok, amelyek kulturális értékkordjain különbözők megítélték a bennük lévőeket, így azok kulturális különbségek között kialakultak. (Giddens, 2008)

Az eltérő lehetőségekkel rendelkező rétegek azért fontosak a bioenergia vonatkozásában, mert a hátrányos helyzetű térségek és csoportok felzárkóztatását ígéri. A magas státuszú pozícióban kizárólag nagy tapasztalattal rendelkező, kvalifikált munkavállalókat foglalkoztatnak. A hátrányos helyzetű kistérségekben elők nem rendelkeznek tapasztalattal, szaktudással, így más munkát nem tudnak ellátni. Egyes etnikumok körében még alacsonyabb a képzettség, éppen
ezért számukra a munkaerő-kínálat kiváltképp csak a szántóföldön elvégzendő munkára szűkül le. (Farkas – Faragó P., 2012b)

Korábbiakban már szó esett a magyar munkaerőpiacon érvényesülő bérek alakulásáról. Azon háztartásoknak, amelyek az alsóbb decilesekbé fotogálnak helyet, korlátozott életviteli lehetőségekkel kell szembenézniük. A szegénység egy tágabb fogalma az energiaszegénység, amely alatt azokat a háztartásokat értjük, akiknek nem nyilik lehetőségük arra, hogy megfelelő hőmérsékletre fűtsék fel lakásuk, vagy éppen jövedelmük több mint 15%-át fordítsák energiafelhasználására. A statisztikai becslések szerint a lakosság 14%-a él jövedelmi szegénységben, míg az energiaszegények becsült aránya 21%. (Szabó M., 2014)

Számukra és a hátrányosan megkülönböztetett csoportok tagjai számára kitörési lehetőséget jelent, ha továbbképzik magukat vagy egyre mobilabbá válnak. A mobilizáció kétféle képpen valósulhat meg. Mobilitást igényel, ha az érintett személy az otthonától távol vállal munkát, másrészt a mobilitás másik formája, amikor a jobb kilátások reményében lakhelyváltoztatásra is elszánja magát.

A migráció során adott személy otthonától távol biztosít magának munkát és lakhatást. Globális szinten a lakosság 3%-a tekinthető migránsnak (világszintre aggregálva a Földön mintegy 200 millió főt jelent). (Rédei, 2012) Amennyiben Magyarországra vetítjük ezt az arányt, akkor mintegy 300 ezer fős populációval számolhatunk, akiket közvetlenül érinthet a tartós lakhelyváltoztatás kérdése. 2015-ben a migráció különösen nagy gondot okozott, hiszen az év első felében több mint 60 ezer menekült érkezett az országba. (Háromszék, 2015)

A migráció egy speciális esete az ingázás, amely során az egyén a lakhelye és munkahelye között napról-napra jelentős távolságot kénytelen megtenni. Hazánkon egyre erősödik az ingázás, a GKI Gazdaságkutató Zrt. felméréseiben arról számolt be, hogy a megkérdezettek megközelítően egynegyede a jövőben semmilyen esetben sem hajlandó az ingázásra, azonban a vállalatok képviselői úgy gondolják, hogy a jövőben egyre nagyobb lesz a jelentősége, mivel a helyi munkaerő-kereslet és kínálat csak eseti jelleggel fog közelíteni egymáshoz. (Adler – Petz, 2010)
A térbeli és egyéb egyenlőtlenségek a biomassza munkaerőpiacát alapjaiban meghatározza, hiszen lokális munkaerő-felszívő hatással rendelkezik, azonban a kvalifikáltabb munkaerő gyakran migrációra kényszerül, vagy arra, hogy napról-napra jelentős távolságot tegyen meg a munkahelye és lakhelye között. (Farkas – Faragó P., 2012ab)

A migráció nagyon fontos szerepet játszik a biomassza témájában, hiszen energetikai célú felhasználása a vidéki lakosság megtartását ígéri. A bioenergia alkalmazása a migráció alapokainak kezelését ígéri, vagyis képes csökkenteni az elmaradott térségeken élők életminőségében tapasztalt hiányérzeteit. A munkahetőség által az érintettek jövedelemhez jutnak, valamint a társadalomba való integrálódás lehetőségéhez. (Gergely – Nagy, 2012b)

A migráció jelentőségét bizonyítja, hogy Spanyolországban 2000-ről 2008-ra 1 millió főről 5 millió főre emelkedett a munkavállaló külföldiek száma. (Kanellopoulos, 2010)

Egy innovatív ágazatban kiemelten fontos a kvalifikált munkaerő biztosítása, szakmai tudásuk folytonos fejlesztése. A zöldenergia-hasznosítás egy ilyen terület. A korábban már bemutatott, újonnan keletkező munkakörök betöltéséhez sok esetben magas szintű képzettségre van szükség. A kutatási tevékenység koordinálását, az elemzési munkálatokat, az erőművek vagy más üzemek vezetését is csak az iskolázott munkaerő képes elvégezni. Amennyiben szakemberhiány alakul ki, hiába a szándék, a beruházási hajlam, nem fog megvalósulni az új projekt, ezáltal az alacsonyán képzettek is munkanélküliek maradnak. Mindezek mellett a tényleges paradigmaváltás szükséges előfeltételére a lakosság életszemléletének megváltoztatása, amelynek egyik kiemelt eszköze lehet az energetikai ismeretek beépítése a tananyagba, már az általános iskolai tanulmányoktól kezdődően. Ez egyben arra is rávilágít, hogy mennyire fontos a jól, hatékonyan működő felsőoktatás.

Faragó P. és Vass (2014) kutatása bebizonyította, hogy minőségi felsőoktatásról nem beszélhetünk. A problémát többek között az alázat és az elkötelezettség hiánya jelenti, amely mellett számos egyéb, humán értéket csökkentő jelenséget is bemutat a tanulmány. A magyar felsőoktatásban támogatják a kényelmes munkarend kialakítását, amely a tapasztalatok szerint fontosabb, mint a kvalifikált munkaerő kinevelése. Ebben a pedagógusok és a hallgatók egyaránt partnernek bizonyulnak. Mindemellett a szerzőpáros szerint minden kétséget kizáróan az jelenti a legnagyobb problémát, hogy az illetések a problémákkal nem foglalkoznak, nem vesznek róluk tudomást, illetve nem akarnak róluk tudomást venni.

A korábbi tanulmányok során szerzett tudás összetétele mindenképpen befolyásolja a munkaerőpiaci lehetőségeket, amely az általános műveltség tekintetében erősen hiányosnak mondható. A kiírt tenderek és a felvételi pályázatok értékelése során ezeket a változásokat feltételezve szem előtt kell tartani. Az egyik legújabban (2014), a témát érintő felmérésben a
társadalmi attitűdöt vizsgálták. A Medián által elvégzett és a Greenpeace által közzétesett elemzés szerint a magyarok kétharmada a megújuló energiaforrásokat helyezi előtérbe a jelenlegi, függőséget okozó importenergiával szemben. Egyesek kétségebe vonják a kutatás valódiságát, annak eredményei mindeneképp elgondolkodtatóak. (Zöldtech, 2015b) A pozitív attitűd ugyan fontos, de valódi energiapiaci ismeretek nélkül ezek nem realizálóthatnak tettekben.

Egy korábbi kérdőíves felmérés az egyetemisták ismereteiről a fenntartható fejlődés vonatkozásában. E kutatás alátámasztja az ismeretek hiányára vonatkozó, korábban megfogalmazott kritikát. Az eredmények szerint a megkérdezettek 38%-a tudta pontosan definiálni a fenntartható fejlődés fogalmát, továbbá 30% azok aránya, akik körvonalazni tudták Magyarország stratégiájának fő vonásait e témakörben. (Bencsik – Gergely, 2005)

Hasonló témákörben végeztek kutatást a kelet-magyarországi régióban is, ahol az egyes megújuló energiaforrások ismertségét, valamint az általános lakossági attitűdöt vizsgálták. A 2006-ban és a 2009-ben elvégzett felmérés eredménye rámutatott, hogy legismertebb energiaforrások a napenergia, a vízenergia és a szélen energia. Ismertségük megközelítőleg 90%-os.

A 2011-es évben Farkas és Faragó P. hazánk egyetemi stáit kérdezték meg a megújuló energiaforrás aktuális helyzetéről, amelyben az előbb említett tanulmányhoz hasonlóan a lakosság energiapiaci ismereteit kívánták felmérni. A kérdőíves kutatást a nem-energetikai szakon tanuló hallgatók között végezték el, melynek eredményei (16. ábra) messze elmaradtak az előzetes várakozásoktól és a korábbi, hasonló területeken végzett kutatások eredményeitől.

16. ábra: A megújuló energiaforrások ismertsége a választott egyetem hallgatói körében, 2011

Forrás: Farkas – Faragó P., 2011b
Az egyetemisták körében általánosan ismert megújuló energiaforrások közé sorolható a nap-, a víz- és a szélenergia. Sem a geotermikus energia, sem a biomassza nem ért el akkora ismeretségre vonatkozó arányszámot, amely bizakodásra adhat okot.

Az oktatási rendszer kifejezetten fontos a jövő szempontjából, hiszen a friss munkaerő nélkülözhetetlen az új gazdasági irányvonalak kialakításához. Az iskolapadóból kikerülő szakemberekre az energetikában hatványozottan szükség van. Pesszimizmusra ad okot azon elemzés, amely szerint a vállalatok kétharmada úgy véli, hogy a szakemberhiány negatívan befolyásolja az ügyemneteket. (MTI Eco, 2014) A magyar oktatási rendszerrel ellentétben, a francia középiskolákban és felsőoktatási intézményekben már tananyag a fenntartható fejlődést. Az interdisciplináris gondolkodás jegyében a földtudományokban és környezeti tananyag során is érintik a fenntarthatóság témáját. (Arnould, 2013)

A biomassza társadalmi hatásai kifejezetten igéretek, azonban az eddigi részadatok elmaradnak a vártakozásoktól. Az elmaradás többek között azzal magyarázható, hogy a jelenlegi scenáriók túl optimista váratkozásokat fogalmaznak meg, illetve a bioenergia gazdaságra és társadalomra vetített jótékony hatása hosszútávon érvényesül. (Farkas, 2014)

A lakosság nagy része nincsen tisztában alapfogalmakkal a megújuló energiaforrások témájában, ugyanakkor számos tétvit látott is napvilágot a közutadatban. Az oktatási rendszer kiépítése mellett hasonlóan fontos a megújuló energiaforrásokhoz kapcsolódó ismereteket adni a lakosság számára. Mindezek mellett a megújuló energia magas árára, a környezetre vetített negatív hatásaira és a potenciáljaira vonatkozó negatív gondolatokat is szükségszerű tisztázni. (Greenpeace, 2014)

Az EU csökkenteni kívánja az integrációban érvényesülő egyenlőtlenséget. Konkrét elképzelése, hogy 2020-ra a szegénycs alapjai és a társadalmi kirekesztettek számát 20 millió fővel, azaz 96,6 millió főre csökkentse. (Brux.Info, 2015)

A Magyarországra vetített társadalmi előrejelzések a népesség fogyását irányozzák elő. Az MTA (2016) KRTK kutatásában 2050-re mintegy 30%-os népességszökkentést vetít előre.

3.5. Technológiai tényezők

Az energetika, mint innovatív szektor rendkívül gyors változásokon megy át. Azok az alkalmazott technológiák, amelyek tegnap még modernek számítottak, a nagy irámban fejlődő szektornak közönhetően már nem feltételezhető, hogy ma is megállják a helyüket. Egy fejlődő iparában a napi szintű megoldások ismerete elengedhetetlen, így az innovációs folyamatoknak rendkívüli szerepe van az iparág folyamatos fejlődésében.

Az innovációs fogalmak vezető személyisége Joseph Alois Schumpeter, osztrák közgazdász. A XX. század első felében jelent meg először az innováció fogalma a szakirodalomban. Schumpeter megközelítésének lényege, hogy az innováció a termelési tényezők újszerű
kombinálásán alapszik. Az egyes típusok közös eleme az újjítás, amely fogalom így mindenképp a középpontba került. (Béres, 2015) Schumpeter a következő innovációs kategóriákat hozta létre:

- új javak vagy már létező javak más minőségben való előállítása;
- új termelési eljárás bevezetése;
- új piac létrehozása, megnyitása;
- a termelési nyersanyagok, féltőkész áruk beszerzésének új forrása;
- új szervezet kialakítása. (Iványi – Hoffer, 2004)

Az utóbbi évtizedekben középpontba kerültek a technológiai vívmányok, amelyek egyben folyamatos termékfejlesztést is generáltak. Újabbnál újabb meghatározások születtek az innovációra, mint fogalomra. Az OECD a következő definíciót hozta létre:

A technológia, valamint az inputok egymásra vetített hatása közvetlenül befolyásolja a termelést. Tekintettel arra, hogy ellentétes folyamatok mennek végbe a tényező-felhasználás során, az aggregált hatás kétes irányú. Mindezekből kiindulva arra következtethetünk, hogy az emberi tényező (foglalkoztatottság) és az eszközarány (technológia) közötti választás során a legtöbb vállalat sokkal nagyobb hangsúlyt fektet a termelési gépek korszerűsítésére, mint az elő munkaerő nagyobb volumenű alkalmazására. (Bögel, 2013)

Az innovációhoz kapcsolódóan nagy szerepe van a tudásnak is, éppen ezért fontos annak menedzselése. A tudásmenedzment köröfogásának kiépítésénél szem előtt kell tartani a technológia rendelkezésére állását, az alapvető célokat, a kultúrát, a szervezeti szintű tanulmányozásokat és az adatok megfelelő elemzését. (Jashapara, 2004) Mindezek elengedhetetlenek a kutatás-fejlesztés megvalósítása során.

A 17. ábrán látható 2013-as adatok alapján kijelenthető, hogy a 2013-as helyzet nem sokban különbözik a 2010-es értékektől.

17. ábra: A kutatás-fejlesztésre fordított összeg a GDP százalékában, 2013

Forrás: EUROSTAT, 2015g

Az EU-s átlag továbbra sem közelíti meg a 2020-as előirányzott tervet. Az integrációra vetített átlagot néhány ország teljesítménye emeli. Az integrációs összeteljesítménynél gyakrabban fordulnak elő az alacsonyabb ráták. A svéd, finn és az osztrák adat azért is figyelemre méltó, mert e három ország tekinthető a legversenyképesebb államnak a megújuló energiaforrások viszonylatában. A 2008-ban 1,85%-os arányhoz képest a 2013-as 2,02%-os átlag igencsak szerény eléréséhez, kiváltéképp, ha figyelembe vesszük, hogy a 2020-ra előirányzott célszám 3%. (BruxInfo, 2015)

Hazánk a tagállamok közötti rangsor középső harmadában foglal helyet, azonban lemaradása továbbra is jelentős egyes integrációs országokhoz viszonyítva. Ennek ellenére a fő problémát az jelenti, hogy a beruházásokat jellemzően a külföldi tulajdonban lévő nagyvállalatok valósítják meg, ugyanakkor a kisvállalatok kerülnek a közvetlen beszerezés különböző szakaszai között. A versenyképességi elemzés alapján 2012-ben az innováció a magyar gazdaság erőssége volt, azonban az elmúlt négy év során számozható innovációk és technológiák felbukkanásával a versenyképessége csendesben elhaladt. (Lehel, 2014)

A biomassza hasznosításához elengedhetetlenül kapcsolódik az innováció, mint fogalom. A napról-napra fejlődő ágazatban nélkülözhetetlen a hatékonyabb eljárások felkutatása. Az energiaszektortban a megújuló energiaforrások már önmagukban egy jelentős termékinnováció eredményeképp hasznosulnak, azonban ezzel nem ért véget a piaci szemléletű tevékenységek sora.

A biomassza energetikai hasznosítását egyre jobban ösztönzik az innovatív eljárások; így a modernabb munkaeszközök, a hatékonyabb eljárások, vagy épp vállalati séma. Úgyanakkor Nagyréde példája kiváló bizonyítékot szolgál arra, miképp lehet megteremteni zöldenergiával a környezetünk mellett életvitelt és a decentralizált termelést mindamellett, hogy növekedjen a foglalkoztatottság.

3.6. Környezeti tényezők

Az energiaszektort innovációját elsősorban a környezeti változások ösztönzik. Éppen ez magyarázza, miért szükséges a biomassza felhasználásánál is számításba venni a környezeti tényezőket. A XX. század globalizálódó világában többségében azt tapasztalhatjuk, hogy az emberi tevékenység folyamatosan rontotta a környezet (levégő, víz, talaj…) minőségét. A globalizációból a következő fontos következmények származnak:

- népesség egyenlőtlen alakulása és növekedése;
- népesség fogyása a fejlett világban;
- ózonréteg csökkenése;
- üvegházhatás;
- biodiverzitás csökkenése;
- erdőpusztulás;
- savases és szélsőséges időjárási elemek. (Tompa, 2007)

A népességben bekövetkezett változások szintén rosszul érintik a globalizálódó világot. Minden állam, ágazat, vállalat ki van szolgáltatva a természeti elemeinek, amely egyre szeszélyesebbé válik. Egyes jelenségek humán beavatkozás nélkül is kialakultak volna, azonban az emberi
felelőtlenség felgyorsította a természetben bekövetkező súlyos változásokat (Lányi, 2003), ami leginkább az üvegházhatasú gázok (ÜHG) kibocsátásával hozható összefüggésbe, amely a klímaváltozást elősegíti/felgyorsítja.

A klímaváltozás hatásait a XX. évszázad második felében kezdte el érezni, amikor is egymást érték azon események, amelyek kedvezőtlenül befolyásolták környezetünket. A 60-as évektől kezdve folyamatosan olvadtak el a jégtagak és a jéghegyek, amely 35 éven belül olyan méretekötölte, hogy a környezetünket és a jogi generációk jöllétét. A globális felmelegedés okozta éghajlati változások olykor olyan méreteket éltetnek, hogy az emberi szervezet számára elviselhetetlen lesz az éghajlat. Ebből következően kijelenthető, hogy az éghajlati változások erősítik a migrációt is. (Houghton, 2009)

Az emberiség akkora mennyiséget bocsát ki az ÜHG-ból, amellyel veszélyezteti Földünket és a jövő generációk jöllétét. A globális felmelegedés okozta éghajlati változások olykor olyan méretekötönték, hogy az emberi szervezet számára elviselhetetlen lesz az éghajlat. Ebből következően kijelenthető, hogy az éghajlati változások erősítik a migrációt is. (Houghton, 2009)

Mindezek mellett egyes elkötelezések szerint az éghajlat változása nem csak a társadalmat, hanem a gazdaságot is sérülékenyé teszi. (Feliciano – Berkhout, 2013) Az Európai Unió klímapolitikai célok megfogalmazásában alapelve, hogy a 2020-2030 közötti üvegházgáz (ÜHG) csökkentési célok csak abban az esetben fogalmazhatók meg egyértelműen, ha a 2020-ra kitűzött teljesítések esetében maximális mértékben biztosítottak az emisszió csökkentési kötelezettségek, a megújuló energia és energiahatékonysági célok teljesülése. (Fogarassy, 2015)

Számos ország emissziója visszaesett, miközben a legjelentősebb kibocsátó, Kína „CO₂-termelése” 9%-kal nőtt. (Saga Commodities, 2012) A világ 10 legnagyobb szennyező országa között 3 Európai Unió tagállam is helyet kapott (Németország, Nagy-Britannia, Olaszország).

A Föld országai közül az öt legjelentősebb a kibocsátások közel háromötödét adják, Kína, a 29%-os megoszlásával első helyet foglal el ebben a rangsorban, de a 13 százalékpontos lemaradás ellenére is az Amerikai Egyesült Államok is nagy terhet jelentnek a környezet számára. Elgondolkodtató, hogy Kína önmagában közel háromszor annyi szennyező anyagot bocsát ki, mint az Európai Unió tagországai összesen.

A környezeti károk okozta felelősség kérdése az egyik legmeghatározóbb vitapont a jelenleg is folyó környezetvédelmi konferenciákon. A nézeteltérések legfőbb forrása, hogy milyen súlyal vegyük figyelembe az országok múltbeli tevékenységeit. (Faragó T., 2012) Az elmúlt évtizedek cselekedeteinek számításba vétele nehézkes folyamat, de mindenféle célszerű erre energiát fordítani, ugyanis támpontot adhat a jelenlegi tendenciákra vonatkozóan.

12. táblázat: Magyarország szén-dioxid kibocsátása, 2012-2013

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Adat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisszió (2012, 1000 tonna)</td>
<td>42640</td>
</tr>
<tr>
<td>Emisszió (2013, 1000 tonna)</td>
<td>39717</td>
</tr>
<tr>
<td>Egy főre jutó emisszió (2013, t/fő)</td>
<td>4,01</td>
</tr>
<tr>
<td>Változás az emisszióban (1000 tonna)</td>
<td>-2923</td>
</tr>
<tr>
<td>Változás (%)</td>
<td>-6,86%</td>
</tr>
</tbody>
</table>

Forrás: EUROSTAT, 2014b, 2015g alapján saját szerkesztés

Az egyre nagyobb energiaigény, valamint a szén-dioxid és a többi üvegházhatást okozó gázok kibocsátása a környezetben rendkívüli mértékű károkat okozott. Az elemzések arra engednek következtetni, hogy az éves átlaghőmérséklet alátámasztja a klimatikus hatásra vonatkozó elképzeléseket. (19. ábra)
Az elmúlt ezer évben erősen változékony volt az időjárat. Az évezred első felében nagyobb sávban mozgott az átlag középhőmérséklet, azonban az évezred derekától kezdve a XX. századig stabilizálódni látszottak az hőmérsékletbeli változások. Az utóbbi 100 évben a mért értékek egyre magasabbak lettek és a kapott átlaghőmérséklet messze kiugrott abból a sávból, amelyből az azt megelőző évszázadokban tartózkodott. A globális felmelegedés a XX. században kezdetét vette.

Hazánk éghajlata a globális trendeknek megfelelően alakul. Az Országos Meteorológiai Szolgálat szerint az elmúlt egy évszázadban Magyarországon is számottevően nőtt az évi középhőmérséklet. Az időjárási folyamat a 80-as évektől kezdve felgyorsult és a középhőmérséklet az azóta eltelt 30 éve alatt 1-2°C-ot emelkedett.

Ezzel párhuzamosan az éves csapadékmennyiség is változott, ugyanis az ország középső területe sokkal csapadékosabb lett, míg a keleti és a nyugati harmada a Kárpát-medencének számottevően kevesebb esőt kapott az utóbbi években. (OMSZ, s.a.ab) Ennek is köszönhetően gyakoribbá váltak a szélsőséges időjárási elemek és a természeti katasztrófák, amely sok ember egzisztenciáját veszélyeztette. (Jávor, 2013)

A globális változások következtében a biodiverzitás is egyre kisebbé válik, amely a biomassza energetikai célú hasznosítására is kihatással van. Minél homogénebb a természetes élővilág, annál kevesebb fásszárú növény fog rendelkezésre állni, mint energetikai alapanyag.

A környezeti fenyegetettségek tehát széleskörűek. A megoldás alapfilozófiája mindenféle adott: a fenntartható fejlődés szellemében kell megválasztanunk jelenbeli és jövőbeli tevékenységeinket. Ha szem előtt tartjuk ezt az ideológiát, akkor felmerül a kérdés, hogy mennyit fogyaszthat a jelen generáció annak figyelembevétele mellett, hogy az utódaink javai is biztosítva legyenek. (Kerekes, 2009)
A jelen és a jövő konfrontációja, ami a legnagyobb fejtőrést okozza a ma szakemberei számára, ugyanis olyan útra kell terelni a politikai ideológiát, a vállalatok tevékenységét, hogy az egy hosszútávon is élhető világot tegyen lehetővé.

A világ országainak szembenemlőtt kell a globalizációs és az emisszió mértékével növekedésének következményeivel. A szélsőséges környezeti elemekkel szemben kiszolgáltatottságot tökéletesen sugallja az a tény, miseszerint egyes országok teljesen védtelenek számítanak a globalizáció ezen következményeivel szemben.

A Notre Dame Global Adaptation Index alapján egyes kategóriába osztották az országokat aszerint, milyen valószínűséggel lehetnek úrrá az őket fenyegető környezeti veszélyeken. Néhány ország besorolása az alábbiak szerint alakult:

- 30-39%: jellemzően Belső-Afrika (pl.: Csád, Kenya, Niger, Mali…);
- 40-49%: Irak, India, Kambodzsa, Bolívia;
- 50-59%: Románia, Szerbia, Brazília, Indonézia;
- 60-69%: Oroszország, Kína, Magyarország, Szaúd-Arábia;
- 70-79%: USA, Kanada, Egyesült Arab Emírségek, Németország;
- 80-89%: Grönland, Ausztrália, Anglia, Svédország, Norvégia, Dánia. (Piac & Profit, 2015b)

Az elmaradottabb régiók szinte teljes mértékben ki vannak téve a globális környezeti hatásoknak. Az index azt is megmutatja, hogy a skandináv régióban található államokat, így például Svédországot is, a legfelkészültebb országok között tartják számon.

A megújuló energiaforrásokban is élen járó országok nagyobb eséllyel kerülnek be azon országok közé, amelyek képesek kezelni a globalizálódó világ elhatalmasodó környezeti szélsőségeit. Más, elmaradottabb nemzeteknek nagyobb hangsúlyt kell fektetni a környezetvédelmi kérdésekre, amely keretein belül egy kiforrott környezeti stratégiát kell kidolgoznii.

Kína, a távolmaradó Oroszország és Kanada nélkül (leginkább az egyezmény értelmetlenségét tagolta) a Kyotói Jegyzőkönyv nem tekinthető annyira hiteles környezetvédelmi lépésnek. (Index – MTI, 2012)

2015-ben, a Párizsi Klímacsúcson megjelent Egyesült Államok, Kína és Oroszország is. Sokan ugyan sikeresnek könyvelték el a konferenciát, hiszen a Párizsi Egyezményt mindhárom ország aláírt, azonban szakértők egy része szerint nem történt áttörés a klímapolitikában. Az USA csak azzal a feltétellel írta alá alá az egyezményt, hogy a kötelező elemek számára kimaradnak, míg Kína úgy véli, minden országnak a saját maga útját kellene járnia a globalizáció elleni védekezés során. (Kolbert, 2015) Véleményem szerint a világméretű problémák ellen együttes erővel, globálisan összefogva kellene dolgoznia az országoknak.

Hazánkban az MTA (2016) KRTK mérete fel a klímaváltozás jelenlegi érzékelhetőségeit, valamint várható jövőbeli következményeit. A kutatás eredményei szerint a magyarok nem tekintik a klímaváltozást fontos társadalmi kérdésnek, holott a várható változások alapján indokolt lenne a környezeti tényezőkre nagyobb hangsúlyt fektetni. A klímaváltozás gazdaságra vetített hatása még bizonytalan, az eredmények egyértelműen arra engednek következtetni, hogy a mezőgazdasági területek részaránya csökken főg, annyi azonban bizonyosnak látszik, hogy a környezetvédelemmel összefüggő politikai kérdések számos WIN-WIN helyzetet teremtenek. (Pezsa et al., 2009)
4. ANYAG ÉS MÓDSZER

A témámhoz kapcsolódó szakirodalom bemutatása után a kutatási célban megfogalmazott hipotézisek igazolásához szükséges elemzés módszertanát ismertetem. Kiindulópontként a már bemutatott elméleti hátterből leszűrhető tanulságokat, annak adattábláit használok.

4.1. Az elméleti elemzés és az abból származó adatok konklúziói

A disszertáció témája újszerű, éppen ezért kiemelt szerepet kap a szakirodalom feldolgozása és a korábbi kutatások másodelemzése/metaelemzése. Munkám során törekedtem a szakirodalom minél szélesebb körű bemutatására. Figyelemmel kísértem az online publikációkat és a nyomtatott formában megjelent hazai és nemzetközi tanulmányokat is. Vizsgálataim folyamán elsősorban a 2013-ig terjedő időszakot követtem figyelemmel.

A korábban már közzétett tanulmányok, adatok nagy segítségemre voltak abban, hogy a fenti fogalmakat számszerűsíteni tudjam, valamint kielégítségére meg tudjam vizsgálni a folyamatokat. Elemzésemet a gyakorlatban általánosan használt statisztikai mutatószámok segítségével végeztem el.

1. A disszertáció során a már bemutatott adatbázisok fontos részét képezték elméleti elemzésemnek. Az online, vagy offline táblázatok és grafikonok igen beszédesek, alkalmazásuk segítségével könnyebben lehet értelmezni az adatok egymáshoz kapcsolódó viszonyokat. A leíró táblák, a csoportosító táblák és az egyes grafikonok segítségével mutattam be többek között a fásszárú biomasszák tulajdonságait, vagy éppen a versenyképességű mutató összetevőit.

3. Az időszerek elemzésénél, az éveken átívelő adatok kézzelfoghatóbbá váltak abban az esetben, ha a kapott adatokat, a tapasztalt változásokat egy évre vetítve is számosítottam. Az átlagos fejlődési mutató a keresetek alakulásában, annak könnyebb értelmezhetőségében jelentett segítséget.
A korábbi adatok arra engedtek következtetni, hogy a veszély valós, az energiafüggőség nem csak hazánkat, hanem az egész integrációt érinti. Egyértelműen látszik, hogy a megújuló energiaforrások valós megoldást jeleníthetnek az energiaválság kezelésében.

A 2013-as adatok alapján realisznak látszik a nemzeti energetikai dependencia és a megújulók részaránya közötti korreláció. Magyarország számára egyértelműen lehetőségként jelenik meg a zöldenergia, azon belül is a biomassza. Hazánk versenyképessége az innovatív piacon a legmagasabb, éppen ezért a megújulók újításközpontú szektorra valós megoldást kínál a globális energiaválságra. Emellett a versenyképességi elemzés arra is rámutatott, hogy a munkaerőpiac az egyik leggyengéből teljesítő pillér, így a tiszta energia hazánk egyik gyengeségét is némiképp kezelni tudná.

Az alternatív energiaforrások hasznosítása csökkenti az importfüggőséget, amely egyúttal az energiaszektor decentralizálását is eredményez. EU-s és nemzetgazdasági szinten hasonlóképp hat a megújuló energiaforrások energetikai hasznosítása. A legtöbb ország a biomassza hasznosítására fókuszál, amely nemcsak lokális munkaerőt igény, hanem munkalehetőséget ígér az alulképzettek számára is.

A biomassza energetikai hasznosítása olyan szellemiséget igényel, amely nem áll távol a fenntarthatóság eszméjétől. Energetikai hasznosítása által lelassíthatóak a napjainkban is érzékelhetős globális környezeti változások. Ennek elérésére minden országban a teljes lakosság összefogására lenne szükség.

Ismertettem továbbá, hogy a fiatalabb generációk, azon belül is az egyetemisták energetikai tudásanyaga nem kielégítő. A teljes összefogás nehezen érhető el úgy, hogy a felnövő nemzedékek nincsnek tiszta útján azzal, miért is kell kiemelten kezelni a megújuló energiaforrások alkalmazásának kérdéskörét, melyen veszélyeket rejtenek a fosszilis energiahordozók, továbbá és milyen tevékenységekkel csökkenthetik az imissziót a mindennapos során. Ennek elérésére minden országban a teljes lakosság összefogására lenne szükség.

Az oktatási rendszer kiépítését követően több energetikai szakember kerülne ki az iskolapadokból, akiknek tudásanyaga kielégítene a XXI. század munkaerőpiaci követelményeit. Ez csökkentené a jelenleg akár 100 km-es napi ingázást és elősegítené a helyi vállalkozások elindítását.

A megújuló energiaforrások adta lehetőségek kiaknázása érdekében szorgalmazni kell, hogy a potenciális lokális gazdaságok jöjjénék létre. Biztosíthato kell a támogatási rendszer átláthatóságát, az összegek lehívhatóságát, a vállalkozások létrejöttével és működésével kapcsolatos törvények egyszerűsítését. A lokális beruházások elősegítésére célszerű lenne decentralizálni az ügynetet, vagyis nagyobb szerepet kellene vállalni az önkormányzatoknak.

A biomassza energetikai hasznosításához szükséges sarokpontok:

1. oktatási rendszer kiépítése;
2. munkaerőpiaci akadályok leküzdése – az alkalmazás szezonalitásának csökkentése és az alacsony képzettségűek bérszínvonalának emelése;
3. új technológiai vívmányok alkalmazása a megújuló energiaforrások piacán, annak figyelembe vétele mellett, hogy a technológiai újításnak nincs egyértelműen pozitív hatása foglalkoztatásra;

4. támogatási rendszer átláthatóvá tétele és az összegek lehivhatóságának biztosítása, valamint

5. törvényi szabályozás szellemiségének tisztázása – a lokális vállalkozások indításának támogatása.

4.2. A témához kapcsolódó kutatás módszertana

4.2.1. Makroszintű metaelemzés

A kutatási részben a disszertáció első felében ismertetett adatok közötti összefüggésekre világítók rá. A kutatási cél meghatározásánál, a zöldország kialakítását elősegítő cselekvési tervben négy kulcsfontosságú elemet emeltem ki. Ezen négy faktort egy-egy, az elemzésekben általánosságban is használt mutatóval, jelzőszámmal írok le, amelyek elemzésem egy-egy pillérét jelentették. Ezen pilléreket mutatja be a 20. ábra.

![20. ábra: A kutatásban alkalmazott mutatószámok logikai felépítése](image)

A releváns eredmények reményében kiemelt figyelmet fordítottam arra, hogy forrásadataim egyrészt ugyanazon időszakot fedjék le, másrészt ugyanazon hivataltól származzanak. Erre a legtöbb esetben lehetőségem nyíltott, azonban az így begyűjtött adatpontok nem minden esetben egyeztek meg. Figyelembe véve az utóbbi évek gazdasági töréspontját és a rendelkezésre álló információkat, úgy döntöttem, hogy további elemzéseimet a 2010-2013-as időszakra végzem el. A faktorok elemzésénél az EUROSTAT adatait hívtam segítségül. Az országok
versenyképességi értékeit abból az adatbázisból állítottam elő, amelyet a disszertáció során már ismertettem.

A kutatás logikai menetéhez igazodva neveztem el a változókat. Az elemzés során minden esetben az alábbi elnevezést alkalmazom:

- \(X_1 \) megújuló energiaforrások részaránya;
- \(X_2 \) munkanélküliségi ráta;
- \(X_3 \) K+F aránya;
- \(X_4 \) egy főre vetített ÜHG kibocsátás;
- \(Y_1 \) GCI;
- \(Y_2 \) ökológiai lábnyom.

Az elemzés során két különböző statisztikai módszert alkalmaztam. Első esetben egy rangkorrelációs együtthatót, amely alapján igyeksztem meghatározni, hogy az éppen szóban forgó két tényező között milyen irányú és erősségű kapcsolat állhat fenn.

A kapott mutató értékeinek minden esetben -1 és 1 közé kell esnie. Abszolút értékben mind a kapcsolat, míg az előjel a kapcsolat irányát mutatja meg.

Tekintettel arra, hogy a rangkorrelációs-számítás nem veszi figyelembe az egyes értékek közötti különbségeket, célszerűnek tűnt egy olyan metodikát is alkalmazni, amely kiküszöböli ezt a hiányosságot. Az adatbázisban szereplő értékek mind arányskálás változók, ebből következően a korrekt statisztikai elemzési eszköz a regresszió-számítás volt.
A regresszió-számítás során vásaszt kapunk arra a kérdésre, hogy mennyiben befolyásolja a magyarázó változó a függő változó értékét, továbbá lehetőség nyílik arra is, hogy megfelelő szignifikancia esetén, többváltozós statisztikai modell alkalmazásával egy megbízható becslést adjunk az eredményváltozót illetően.

A statisztika eszköztára számos függvénnytípus ismer, azonban elsődlegesen a lineáris regresszió paramétereit határozat meg a diszszertáció során. Ugyan kísérletet tettem magasabb fokú és bonyolultabb egyenletek felállítására is, de a kapott eredmények alapján arra a következtetésre jutottam, hogy mivel nem kaptam lényegesen relevánsabb eredményt – viszont sokkal bonyolultabb azok értelmezése –, elvettem a többi regressziós függvénytípus alkalmazását. A jutottam, hogy mivel nem kaptam lényegesen relevánsabb eredményt – viszont sokkal bonyolultabb azok értelmezése –, elvettem a többi regressziós függvénytípus alkalmazását. A lineáris regresszió paramétereinek felvázolását a statisztikában szokásos mutatószámok és jelölések mentén végeztem el.

Regressziós egyenlet:

$$y = b_0 + \sum_{i=1}^{n} b_i \cdot X_i$$

Az egyenletben szereplő változók a következők:

- **Y** = az eredményváltozó,
- **b_0** = az X=0 értékhez rendelt Y becsült értéke,
- **b_i** = a lineáris függvény meredeksége, az i. változó egységnyi változásának hatása
- **X_i** = az i. magyarázó változó.

Az egyenlet paramétereinek meghatározása mellett középpontba került annak relevanciája is. Első lépésben meghatároztam a P-értéket (Sig), amely azt jelöli, mi az a valószínűség, amely mellett elvethető a véletlen, mint magyarázó változó. Általában a P<0,05 mellett jelentik ki a kutatók, hogy statisztikailag igazolható kapcsolat áll fenn a két tényező között, azonban a jelen kutatás mintaelemszáma miatt ettől több esetben eltérné. A kapcsolat erősségére az általánosan használt R-négyzetet (R^2, R-square) használtam, amelynek gyöke kimutatja, hogy a magyarázó változó váltakozása hány százalékban magyarázza meg az eredményváltozót.

A regresszió-számítást mindenesetben megelőzve egy szórásdiagram felrajzolása. Az X és az Y változó egyes értékeinek megoszlása már némi sejtést adott arra vonatkozóan, hogy milyen regressziós paraméterekre számíthatok. Olyan esetekkel is szembesülem, amely során 1 vagy 2 adatpont mesze eltért a többitől. Ezen outlier pontokat az elemzés első fázisában vontam be, majd a második lépésben kiszűrtem. Amennyiben a két esetben számottevő eltérő eredményeket kaptam, mindkét esetet szerepeltettem az erre vonatkozó táblázatban, azonban ha az outlier kiszűrése nem hozott lényegi eltérést a paraméterekben, eltekintettem a kétszer történő szerepeltetéstől.

Az elemzést az SPSS 22.0. statisztikai programcsomag alkalmazásával végeztem el.

A regressziószámítás során felvázolni kívánt modell alapfeltéve, hogy a megújuló energiaforrásokban bekövetkezett esetleges volumenbeli vagy szerkezetbeli változás megelőzi, vagy együtt jár a versenyképességi mutató változásával. Az alapfeltevésből kiindulva végző
konzekvenciákat a versenyképességre gyakorolt hatásból vontam le, éppen ezért a GCI és az ökológiai lábnyom tekinthető függő változónak az elemzések során. A kiválasztott mutatók alakulására ható tényezők vizsgálatánál első lépésben a disszertáció elején bemutatott ábra alapján kialakított változókat egyesével teszteltem. A releváns faktorokat összegyűjtve igyeksztem olyan többváltozós regressziós egyenletet felvázolni, amelyek összességében megbizhatóan előrejelzik a GCI-mutató alakulását, illetve az ökológiai lábnyom értékét. A modell felállításánál minden esetben figyeltem arra, hogy a közbenső változók miképpen korrelálnak egymással, illetve az újonnan hozzáadott tényező valóban releváns javulást idéz-e elő a regresszióban.

A metaelemzésem fő céljaként fogalmaztam meg, hogy az EU tagországainak egyes makroadatok között összefüggést mutassak ki. Az integráció tagállamai igencsak heterogének, ezért arra a következetetésre jutottam, hogy cég szerű lenne olyan országok körében elvégezni az elemzéseket, amelyek többé-kevésbé hasonló méretűek. Ez egyben szükségessé tette, hogy a 28 országot kategóriákba soroljam. A kategóriákba sorolás alapján kialakított változókat egyesével teszteltem. A releváns faktorokat összegyűjtve igyeksztem olyan többváltozós regressziós egyenletet felvázolni, amelyek összességében megbizhatóan előrejelzik a GCI-mutató alakulását, illetve az ökológiai lábnyom értékét. A modell felállításánál minden esetben figyeltem arra, hogy a közbenső változók miképpen korrelálnak egymással, illetve az újonnan hozzáadott tényező valóban releváns javulást idéz-e elő a regresszióban.

A nagy országok kategóriája azon államok kaptak helyet, amelyek egy főre vetített GDP értéke a legmagasabbak között van, vagy a lakosság nagysága meghaladja a 15 millió főt. Az elemzés során eltekintettem a jelentős gazdasági fejlődést mutató miniállamoktól, valamint 15 millió főt meghaladó, de gyenge gazdasággal rendelkező országoktól. Az így kapott országok adatait elemeztem, kivételt képez ez alól Lengyelország. A lengyel adatot számos esetben outlierként értelmeztem, ezért azokat minden alkalommal kiszűrtem a regressziós egyenlet felállításánál.

A nagy országok csoportjába azok az államok foglaltak helyet, amelyek lakossága 1 és 15 millió között van, és a gazdaság intenzitásuk se indokolja, hogy a nagy országok között kapjanak helyet. Ebben a kategóriában 10 ország képviselt e magát (többek között Magyarország is); jellemzően a keleti blokkhoz tartozó államok.

4.2.2. Kérdőíves felmérések

A disszertáció részét képező empirikus kutatásban az önkormányzatok biomassza energetikai hasznosításával kapcsolatos attitúdját vizsgáltam. A kutatás középpontjában leginkább a jövőkép és a megújuló energiaforrások (azon belül is a biomassza) támogatottsága állt. A kérdőíves felmérésben a habitus mellett arra is kívántunk voltam, hogy milyen projektekkel segítség élő a biomassza térnyerését az érintett önkormányzatok, illetve milyen elképzeléseik vannak arra vonatkozóan, hogy nagyobb hangsúlyt kapjon a bioenergia a településen. Mindezek mellett célul tűztém ki a biomassza munkahelyteremtő-képességét olyan térségben körvonalazni, amely az ország elmaradottabb régiójában foglal helyet. Ezzel bizonyítani kívántam a szakirodalomban gyakran előnyként megfogalmazott életszínvonal emelkedésére vonatkozó kedvező hatást.
A kérdőívet 23, a Heves megyei Gyöngyösi kistérséghez tartozó önkormányzatából kaptam vissza. A viszonylag alacsony mintaelemszám a megfigyelt egyedek jellegével magyarázható, amely egyben azt is jelenti, hogy az eredményekből hosszabb távú, átfogóbb következtetést nem lehet levonnii.

A felméréshez egy önkötőlős, papír alapú kérdőív tartozott, amely egyaránt tartalmazott zárt és nyitott kérdéseket. A zárt kérdések alkalmazása azért tünt célszerűnek, mert kezelése mind a válaszadó, mind a kutató szempontjából egyszerűbb, míg a nyitott kérdésekkel a megkérdezettek nagyobb eséllyel adnak konkrétabb, mélyebbre ható elemzést elősegítő választ, amely feltárhatja az ok-okozati viszonyokat.

A nyitott kérdések típusai közül főként azon esetek képviseltették magukat, amelyeknél Likert-skálát használtam a válaszok értelmezésénél. Ugyan az ötfokú skálát szokták alkalmazni a leggyakrabban, és ettől eltérően tizenegy fokú skálát részesítettem előnyben. Véleménym szerint a tizenegy fokú skála sokkal könnyebben értelmezhető és megbízhatóbb eredményt ad. Felépítésében még emlékeztet ugyan a pár lehetőséget magában foglaló skálás kérdésekre, azonban a bevált rutinra alapozva az is kijelenthető, hogy a 11 érték feltüntetése már nem sokban tűr el a százalékosan értelmezhető válaszoktól. A magasabb megbízhatóság és az eltérő értelmezésekhez fakadó torzító hatások minimálisra való csökkenése egyben lehetővé teszi a számmomra, hogy az alapjában ordinális változót felértékeljém és statisztikailag is úgy kezeljém, mint egy numerikus (intervallum skálás vagy arányskálás) változót.

Az adatok kiértékelésének első fázisa a bekódolás. A visszakapott és a kutatás szempontjából értékelhető kérdőívek válaszait a Microsoft Excel segítségével alakítottam át. A kódolt válaszokból álló adatbázis átkonvertáltam előkészítétem az adatfeldolgozásra. Az elemzéshez az SPSS 22.0-ás verziószámú statisztikai programcsomogot használtam. A kutatási célban megfogalmazottak továbbra is a figyelmem középpontjában álltak, azonban a felmérésben szereplő Likert-skálás kérdések lehetőséget nyújtottak arra, hogy betekintést nyerjek az önkormányzatok biomassza-hasznosítás irányába mutató hozzáállásába.

A feldolgozott adatoknál nagy szerep jutott a leíró statisztikai eszközöknek. A kérdéssor felépítése és a mintaelmemszám sok esetben nem tette lehetővé, hogy többváltozós statisztikai módszereket alkalmazzak, ennek okán a helyzeti középtétekeket és az egyváltozós ábrázolási technikák alkalmazása jelentette az adatok értelmezésének nagy részét. Helyzeti középtétekek közül különbösen nagy szerepe volt az átlagnak, a módusznak, míg hátrábe szorultak a kvartilisek és az asszimetriát jellemző mutatószámok.

A metaelemzéshez hasonlóan előfordult, hogy két változó között valamilyen összefüggést kerestem, amelynek kimutatására regresszió-számítást végeztem. Az így kapott egyenlet paramétereit és a kapcsolat szorosságára vonatkozó mutatószámokat hasonlóképpen alkalmaztam, mint azt a metaelemzés módszertana során már ismertettem.
5. A KUTATÁS EREDMÉNYEI

5.1. A metaelemzés eredményei

Az energiastratégia megalkotásához szem előtt kell tartanunk a befolyásoló tényezőket. Az elméleti bevezetés számadatait használva mélyebb elemzéseket is elvégezhetünk, illetve olyan összefüggéseket mutathatunk ki, amelyek lényegesen közelebb visznek a disszertáció bevezetésében megfogalmazott kutatási célok megvalósításához. Fontosnak tartom az ok-okozati viszonyok feltárását. Az energiastratégia központi elemei közé tartoznak ezen ok-okozati kapcsolatok épülő folyamatok, amelyek többek között a megújuló energiaforrások hasznosítását is érintik.

Habár doktori disszertáció elsősorban hazánk jövőbeli cselekvési tervét igyekszik meghatározni, mindenképp szükségesnek találm, a kutatási célban megnevezett fogalmakhoz kapcsolódó mutatószámokat globális szinten is megvizsgálni. Elemzésemet két szinten végeztem el:

- világszinten és
- az Európai Unió tagországaik között.

5.1.1. Világszinten történő elemzés

A „zöld ország” eszméje a globalizált világban a fenntartható fejlődés felé azonosítható. Világszinten elsősorban optimális hátteret kell biztosítani, amely magában foglalja a kedvező politikai-diplomáciai légkör, a nemzetközi jog támogató felépítését és a természeti tényezők megóvása iránti elkötelezett tevékenységeket.

Mindezek ellenére elkerülhetetlennek látszik a régiók közötti és állandó gazdasági rivalizálás, amely egyben a versenyképesség növelését megelőző intézkedések fókusza helyezését jelenti. Napjainkban néhány állam és régió globális szinten is jelentős befolyást tud gyakorolni a gazdasági és egyéb folyamatokra. Ezen országok/térségek ideológiai irányvonalai meghatározzák Földünk jövőjét.

<table>
<thead>
<tr>
<th>Ország</th>
<th>Megújuló energiaforrások részaránya %</th>
<th>Munkanélküliségi ráta %</th>
<th>K + F a GDP százalékában %</th>
<th>CO₂ kibocsátás metric tonna / fő</th>
<th>GCI (2011-12) Index Rangsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztrália</td>
<td>7,5 7</td>
<td>5,1 5</td>
<td>2,25 5</td>
<td>16,5 10</td>
<td>5,11 7</td>
</tr>
<tr>
<td>Brazília</td>
<td>45,5 2</td>
<td>6,7 8</td>
<td>1,14 9</td>
<td>2,2 2</td>
<td>4,32 10</td>
</tr>
<tr>
<td>Egyesült Arab Em.</td>
<td>0,1 12</td>
<td>4,1 2</td>
<td>0,49 12</td>
<td>20,4 12</td>
<td>4,89 9</td>
</tr>
<tr>
<td>Egyesült Királyság</td>
<td>4,1 10</td>
<td>7,8 9</td>
<td>1,69 8</td>
<td>7,1 6</td>
<td>5,39 5</td>
</tr>
<tr>
<td>Franciaország</td>
<td>11,3 5</td>
<td>9,2 12</td>
<td>2,19 6</td>
<td>5,2 3</td>
<td>5,14 6</td>
</tr>
<tr>
<td>India</td>
<td>39,9 3</td>
<td>3,5 1</td>
<td>0,82 11</td>
<td>1,7 1</td>
<td>4,30 11</td>
</tr>
<tr>
<td>Japán</td>
<td>4,6 9</td>
<td>4,5 4</td>
<td>3,38 1</td>
<td>9,3 8</td>
<td>5,40 4</td>
</tr>
<tr>
<td>Kína</td>
<td>6,7 8</td>
<td>4,3 3</td>
<td>1,79 7</td>
<td>6,7 5</td>
<td>4,90 8</td>
</tr>
<tr>
<td>Németország</td>
<td>11,6 4</td>
<td>5,9 6</td>
<td>2,80 3</td>
<td>8,9 7</td>
<td>5,41 3</td>
</tr>
<tr>
<td>Oroszország</td>
<td>3,2 11</td>
<td>6,5 7</td>
<td>1,09 10</td>
<td>12,6 9</td>
<td>4,21 12</td>
</tr>
<tr>
<td>Svédország</td>
<td>46,5 1</td>
<td>7,8 9</td>
<td>3,22 2</td>
<td>5,5 4</td>
<td>5,61 1</td>
</tr>
<tr>
<td>USA</td>
<td>8,2 6</td>
<td>9,0 11</td>
<td>2,77 4</td>
<td>17,0 11</td>
<td>5,43 2</td>
</tr>
</tbody>
</table>

A táblázatban szereplő országok adataihez alapozva rangkorrelációs együtthatóval lehetőség nyílik arra, hogy egyes változók közötti összefüggést páronként ellenőrizzük. Figyelembe véve az egyes faktorok adatait, a rangkorrelációs együttható a 14. táblázatban szereplő értékeket vette fel:

14. táblázat: Rangkorrelációs együttható értéke

<table>
<thead>
<tr>
<th>Válozó</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>Y_1</th>
<th>Y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>-0,234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td>0,322</td>
<td>-0,325</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td>0,685</td>
<td>-0,052</td>
<td>-0,084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_1</td>
<td>0,280</td>
<td>-0,444</td>
<td>0,853</td>
<td>-0,161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_2</td>
<td>-0,182</td>
<td>-0,108</td>
<td>-0,182</td>
<td>0,021</td>
<td>-0,336</td>
<td></td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A számítások alapján arra a következtetésre jutottam, hogy a világszintű adatok két esetben mutatnak releváns kapcsolatot. A rangkorrelációs együttható értékét elemezve azon országok, amelyek nagy hangsúlyt fektetnek a megújuló energiaforrásokra, nagyobb valószínűséggel ügyelnek a globális felmelegedésért felelős gázok, így a szén-dioxid kibocsátásra is.
Disszertációm fő elemzési témaköre, a versenyképesség csupán az innovációs költségekkel mutat lényegi összefüggést. Egy állam, GDP-jének minél magasabb hányadát fordítja K+F-re, annál nagyobb lesz az ország GCI-mutatója, vagyis a WEF kimutatása alapján globális szinten annál kompetitívebb.

A magyarázó változók sem a 2013-as, sem a 2015-ös GCI-vel nem mutatnak konzkekvensen szorosabb kapcsolatot. A legjelentősebb különbség az emisszióknak a versenyképességre gyakorolt hatásában mutatkozik meg, ahol a független változó negatív irányú, közepes erősségű kapcsolatban áll a függő változóval. A másik alkalmazott versenyképességi mutató (ökológiai lábnyom) szintén nem mutatott ki semmilyen releváns kapcsolatot a magyarázó változóval.

A 14. táblázatban foglalt számértékek ellenére nem lehet messzemenő következtetést levonni a számításokból, ugyanis az elemzésben szereplő országok földrajzi és kultúrában is igen távol állnak egymástól, másrészt pedig a fenti kapcsolatok kimutatása csupán egyetlen időpont (év) adatainak ismeretében történt.

5.1.2. Európai Unióra vetített elemzés

![21. ábra: Az EU tagállamainak GCI-mutatója az ökológiai lábnyom függvényében](image)

Forrás: Schwab (2012), TOM Agency [s.a.], One Word – Nations Online [s. a.] alapján saját szerkesztés
Az Európai Unió államai között az alkalmazott versenyképességi mutatók tekintetében jelentős eltérés mutatkozik. E differencia okot adott arra, hogy az integráció tagországait kategóriánként elemezzem. Ezek mentén mutatom be a kapott eredményeket, vagyis először

- a nagy országokra,
- majd a kis országokra

vonatkozó összefüggéseket ismertetem.

5.1.2.1. Európai Unión belül elhelyezkedő nagy országok

Az elemzés során kiemelten kezeltem, hogy a GCI-re és az ökológiai láányomra ható tényezőket ismertessem. A rangkorrelációs együthatható alapján a munkanélküliségi ráta és az innovációs tevékenység is pozitívan befolyásolja a GCI-t. A területigény tekintetében a megújuló energiaforrások részaránya befolyásolható, ahol a korrelációs együthatható értéke 0,599. [10. számú melléklet] Az időszakos adatokat figyelembe véve messzemenő következtetést nem lehet leltani, ugyanis a legtöbb esetben alacsony a korreláció mértéke.

A 2013-as adatokon alapuló regressziós elemzés arra enged következtetni, hogy a GCI alakulására a munkanélküliségi ráta és a biomassza energiaszerkezetben belüli részaránya van hatással a legjobban, azonban az innovatív országok versenyképességi indexe is magasabb. A munkaerőpiaci és az energiaszerkektor folyamatai már tárgyévében érezhetők hatásukat. Az intenzívvebb innovációs tevékenység csak az adott évre vetítve mutat hatást. A két évvel később kapott GCI értékké a K+F aránya.

Az összefüggések ellenére nem lehet felállítani egy olyan modellt, amely megbízhatóan képes becslést adni a versenyképességi mutatóra. Ez arra vezethet vissza, hogy a két, statisztikailag szignifikáns változó egymással erősen összefügg:

\[X_2 = 23,689 - 21,649X_1 \]

A biomassza termelésével egyáltalán nem foglalkozó országok várhatóan 23,7%-os munkanélküliségi rátaival (X₂) tervezhetnek. Ahogy növekszik a biomassza megújuló energiaforrásokra vetített aránya (X₁), úgy csökken az állásnélküliek aránya a társadalomban.

Egy hipotetikus, csak biomasszával foglalkozó ország feltételezett munkanélküliségi ráta 2% körül várható. A biomassza részaránya és a munkanélküliségi ráta között kimutatott kapcsolat statisztikailag releváns (P=0,029). A két változó között egy közepes erősségű (R²=0,394) negatív irányú kapcsolat áll fenn, amely együttal azt is jelenti, hogy a megújuló energiaszerkezet közel 63%-ban magyarázza a munkanélküliségi alakulását a regresszió alapján.

Hasonlóan alakulnak az egyes értékek abban az esetben, ha a többváltozós egyenletet a biomassza részaránya és a K+F aránya alkotja. Ugyan a kapott modell 85%-os magyarázóerővel rendelkezik, e kapcsolat leginkább annak köszönhető, hogy a magyarázó változók között szignifikáns kapcsolat áll fenn.
Hosszútávon a GCI-re a K+F hatása figyelhető meg, ugyanis a 2010-re vonatkozó innovációs tevékenység közepes erősségű kapcsolatban áll a 2015-ös GCI-vel (P=0,016, R²=0,459).

Az ökológiai lábnyom, mint az ország által szükséges és a rendelkezésre álló területének hanyadosa, a legtöbb esetben nem mutat releváns kapcsolatot a tesztelt változókkal. A regressziós egyenlet felállításánál csupán egyetlen változó tekintetében kaptam értelmezhető eredményt. A 2010-es és a 2013-as adatok is hasonló következtetésre juthatunk: a megújuló energiaforrások részaránya számtettevően csökkenti az ország ökológiai lábnyomát (P=0,025, R²=0,402).

A vizsgált időszakban (2010-2013) a GCI-indexre vetített hatás leginkább az outlier adatpontok kiszűrése után mutathatók ki. A 2013-as GCI-t vizsgálva két, a 2015-ös indexet elemezve három esetben is kaptam olyan értéket, amelyet előzetesen kellett szűrni.

A 15. táblázat alapján jutottam arra a következtetre, hogy a vizsgálatban bevont országok K+F tevékenysége, illetve a munkanélküliségi ráta csökkenése egyaránt növeli a versenyképességet.

<table>
<thead>
<tr>
<th>Változó megnevezése</th>
<th>b₀</th>
<th>b₁</th>
<th>Sig.</th>
<th>R-négyzet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia részaránya</td>
<td>6,414</td>
<td>-1,142</td>
<td>0,474</td>
<td>0,052</td>
</tr>
<tr>
<td>Fásszárúak felhasználása (egy főre vetítve)</td>
<td>13,015</td>
<td>-7,696</td>
<td>0,230</td>
<td>0,140</td>
</tr>
<tr>
<td>Munkanélküliségi ráta</td>
<td>1,959</td>
<td>3,258</td>
<td>0,044</td>
<td>0,348</td>
</tr>
<tr>
<td>Munkanélküliségi ráta (outlier nélkül)</td>
<td>-0,037</td>
<td>5,213</td>
<td>0,001</td>
<td>0,722</td>
</tr>
<tr>
<td>K+F aránya</td>
<td>2,551</td>
<td>2,596</td>
<td>0,591</td>
<td>0,030</td>
</tr>
<tr>
<td>K+F aránya (outlier nélkül)</td>
<td>-3,064</td>
<td>8,193</td>
<td>0,057</td>
<td>0,383</td>
</tr>
<tr>
<td>ÜHG kibocsátás</td>
<td>10,530</td>
<td>-5,174</td>
<td>0,341</td>
<td>0,091</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A viszonylagosan alacsony elemszám alapján arra a következtetésre jutottam, hogy habár több releváns magyarázó változó is szerepel az adatbázisban, nem valósítható meg többváltozós regressziós modell felállítása.

Az ökológiai lábnyom esetében a magyarázó tényezők jobban illeszkednek a regressziós egyenesre. A megújuló energia részaránya, valamint az innováció is egyaránt befolyásolja a fenntarthatósági mutatót.

A 16. táblázat és a regressziós egyenlet egyaránt azt sugallja, hogy a magyarázó változók és az ökológiai lábnyom között közepes erősségű pozitív kapcsolat áll fenn.
16. táblázat: Az ökológiai lábnyomra ható tényezők (2010-2013-as időszakra vetített változók)

<table>
<thead>
<tr>
<th>Változó megnevezése</th>
<th>b₀</th>
<th>b₁</th>
<th>Sig.</th>
<th>R-négyzet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia részaránya</td>
<td>-60,592</td>
<td>62,114</td>
<td>0,011</td>
<td>0,491</td>
</tr>
<tr>
<td>Fásszárúak felhasználása (egy főre vetítve)</td>
<td>-49,575</td>
<td>56,043</td>
<td>0,634</td>
<td>0,024</td>
</tr>
<tr>
<td>Fásszárúak felhasználása (egy főre vetítve) (outlier nélkül)</td>
<td>-139,705</td>
<td>141,806</td>
<td>0,021</td>
<td>0,509</td>
</tr>
<tr>
<td>Munkanélküliségi ráta</td>
<td>25,162</td>
<td>-17,848</td>
<td>0,572</td>
<td>0,033</td>
</tr>
<tr>
<td>K+F aránya</td>
<td>-193,942</td>
<td>200,603</td>
<td>0,005</td>
<td>0,566</td>
</tr>
<tr>
<td>ÜHG kibocsátás</td>
<td>95,520</td>
<td>-84,688</td>
<td>0,383</td>
<td>0,077</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A megújuló energiaforrások közölfelvázolására vonatkozó elemzés során fontos kiemelnünk, hogy az elemzésbe bevont államok sokkal homogénabbek, mint a korábban bemutatott nagy országok. A tíz, egyenként 1 és 15 millió fő közötti lakossággal rendelkező állam elemzése hasonló módon történt, mint az előző esetben.

Az egy adott időpontra vetített adatok vizsgálatánál megfigyelhető, hogy a versenyképességre leginkább a megújuló energiaforrások szerkezete, valamint a munkanélküliségi ráta van hatással.

A rövidtávú hatásokat értékelve kijelenthető, hogy a biomassza részarány növelése pozitív irányba mozgatja az ország versenyképességi mutatóját. (17. táblázat)

<table>
<thead>
<tr>
<th>Változó megnevezése</th>
<th>b₀</th>
<th>b₁</th>
<th>Sig.</th>
<th>R-négysz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia részaránya</td>
<td>4,105</td>
<td>0,010</td>
<td>0,298</td>
<td>0,134</td>
</tr>
<tr>
<td>Biomassza részaránya</td>
<td>3,684</td>
<td>0,853</td>
<td>0,012</td>
<td>0,570</td>
</tr>
<tr>
<td>Fásszárúak felhasználása (egy före vetítve)</td>
<td>4,042</td>
<td>0,020</td>
<td>0,025</td>
<td>0,488</td>
</tr>
<tr>
<td>Munkanélküliségi ráta</td>
<td>4,477</td>
<td>-0,033</td>
<td>0,002</td>
<td>0,730</td>
</tr>
<tr>
<td>K+F aránya</td>
<td>4,086</td>
<td>0,168</td>
<td>0,192</td>
<td>0,203</td>
</tr>
<tr>
<td>ÜHG kibocsátás</td>
<td>4,050</td>
<td>0,029</td>
<td>0,201</td>
<td>0,195</td>
</tr>
<tr>
<td>ÜHG kibocsátás (outlier nélkül)</td>
<td>4,053</td>
<td>0,035</td>
<td>0,032</td>
<td>0,506</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A munkanélküliségi ráta – hasonlóan a biomassza részarányához – erős kapcsolatban áll a GCI-vel, ugyanis magyarázó ereje közel 85%. A teljes foglalkoztatást biztosító nemzetgazdaság becsült GCI-mutatója 4,75, míg a fás- és lágyszárú növények energetikai hasznosítását nem szorgalmazók 3,68-as indexszel kalkulálhattak. A nagy országokhoz hasonlóan ebben az esetben is érdemes volt a statisztikailag releváns tényezők között fennálló kapcsolatot jobban szemügyre venni.

A háromváltozós esetben felvázolt egyenletnél a következő eredményt kapjuk:

\[Y_1 = 4,586 + 0,007X_1 - 0,032X_2. \]

Habár a két változó között csak gyenge kapcsolat mutatható ki, a lineáris modell felállítása mégsem valósítható meg. A tényezők együttesen közel 90%-ban magyarázzák a GCI adott évi alakulását, mégis a szignifikancia szintek alapján (\(P_1=0,145, P_2=0,002\)) kijelenthető, hogy a munkanélküliségi ráta hatása domináns.

A rövidtávú hatás középhosszú távon (2 év múlva) szintén érvényesül, azonban hosszútávon (5 év) már szinte semmilyen következménye nincs az adott évi teljesítmények.

Az ökológiai lábnyom esetében kiválóan érvényesül a fenntarthatóság szellemisége. Az eredményváltozóra leginkább azon magyarázók vannak hatással, amelyek közvetlenül is az élhető világot célozzák meg.

A 18. táblázat adatai arra engednek következtetni, hogy a biomasszára való összpontosítás csökkenti az ország ökológiai lábnyomát.
18. táblázat: Az ökológiai lábnyomra ható tényezők (2013-as magyarázó változókkal)

<table>
<thead>
<tr>
<th>Változó megnevezése</th>
<th>b₀</th>
<th>b₁</th>
<th>Sig.</th>
<th>R-négyzet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia részaránya</td>
<td>5,085</td>
<td>-0,090</td>
<td>0,105</td>
<td>0,295</td>
</tr>
<tr>
<td>Biomassza részaránya</td>
<td>4,681</td>
<td>-1,920</td>
<td>0,445</td>
<td>0,075</td>
</tr>
<tr>
<td>Biomassza részaránya (outlier nélkül)</td>
<td>5,392</td>
<td>-3,414</td>
<td>0,061</td>
<td>0,416</td>
</tr>
<tr>
<td>Fásszáráuak felhasználása (egy főre vetítve)</td>
<td>5,023</td>
<td>0,009</td>
<td>0,118</td>
<td>0,226</td>
</tr>
<tr>
<td>Munkanélküliségi ráta</td>
<td>3,739</td>
<td>-0,033</td>
<td>0,709</td>
<td>0,018</td>
</tr>
<tr>
<td>K+F aránya</td>
<td>1,541</td>
<td>1,387</td>
<td>0,070</td>
<td>0,354</td>
</tr>
<tr>
<td>ÚHG kibocsátás</td>
<td>32,744</td>
<td>-1,764</td>
<td>0,231</td>
<td>0,197</td>
</tr>
<tr>
<td>ÚHG kibocsátás (outlier nélkül)</td>
<td>-0,405</td>
<td>0,505</td>
<td>0,007</td>
<td>0,672</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

Azok az államok, amelyek egyáltalán nem helyezik előtérbe a bioenergia térnyerését, hozzávetőlegesen ötszöröse területigénnyel rendelkeznek, míg akár egy 50%-os részarány is jelentősen csökkentené a környezetre rövid többleterhet. Az ÜHG kibocsátás nagyjából 80%-ban magyarázza az ökológiai lábnyom alakulását. Ez alapján kijelenthető, hogy az emisszió növekedése egyben növeli az ország területigényét is.

A 2010-2013-as időszak éves fejlődési ütemét alapul véve egyes magyarázó változókban bekövetkezett változás nem befolyásolta jelentősen a versenyképességi mutatóra vetített hatást, azonban a 19. táblázat szerint más változók számos ezt a hatása mutatható ki.

<table>
<thead>
<tr>
<th>Változó megnevezése</th>
<th>b₀</th>
<th>b₁</th>
<th>Sig.</th>
<th>R-négyzet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia részaránya</td>
<td>6,456</td>
<td>-1,957</td>
<td>0,197</td>
<td>0,198</td>
</tr>
<tr>
<td>Fásszáráuak felhasználása (egy főre vetítve)</td>
<td>3,555</td>
<td>0,807</td>
<td>0,324</td>
<td>0,121</td>
</tr>
<tr>
<td>Munkanélküliségi ráta</td>
<td>3,219</td>
<td>1,134</td>
<td>0,011</td>
<td>0,576</td>
</tr>
<tr>
<td>K+F aránya</td>
<td>6,615</td>
<td>-2,147</td>
<td>0,089</td>
<td>0,320</td>
</tr>
<tr>
<td>K+F aránya (outlier nélkül)</td>
<td>7,740</td>
<td>-3,263</td>
<td>0,010</td>
<td>0,633</td>
</tr>
<tr>
<td>ÚHG kibocsátás</td>
<td>12,221</td>
<td>-7,707</td>
<td>0,006</td>
<td>0,630</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A munkanélküliségi ráta és a K+F aránya mellett az emisszió is releváns változóként jelenik meg. A 0,633-as R² az outliernek tekinthető csehországi adat kiszűrésé ellenére figyelemre méltó. A 19. táblázat adatai arra engednek következtetni, hogy:

- a munkanélküliségi rátában bekövetkezett tendenciázus csökkenés versenyképességi javulást eredményez;
- az egyre intenzívebb K+F arány nem javítja az ország kilátásait;
- az emisszió csökkenése egyben a nemzetgazdaság versenyképességének csökkenését is eredményezi.

Az előzőekben bemutatott adatokból következően felállítható egy olyan modell, amely megbízható előrejelzést tud adni a GCI-re vonatkozóan.

\[Y_1 = 12,028 - 2,014X_3 - 5,480X_4 \]

Az innováció (X₃) és az emisszió (X₄) együttesen közel 94%-ban magyarázza meg a GCI 2015-ös értékének alakulását. Mind a két bevont változó statisztikailag szignifikáns (P₃=0,024, P₄=0,012), ugyanakkor a közöltük fennálló korrelációs együttható megközelítőleg sem éri el az 1-es értékét. ¹ Az a gazdaság, amely a 2010-2013-as időszakban semmilyen innovációs növekedést nem mutatott, ugyanakkor az ÜHG kibocsátásában is stagnált, átlagosan 4,53-as GCI értékekkel kalkulálhatott (X₃=1 és X₄=1). A 2015-ös versenyképességi indexre negatívan hatott az intenzívebb innovációs tevékenység, illetve az emisszió csökkenése.

Az ökológiai lábnyom vonatkozásában az innováció és a munkanélküliségi ráta változását találtam relevánsnak. Mindkét változó esetében egy ország adatpontja nem illeszkedett jól a regressziós egyenesre. Az outlier kiszűrése után a kapcsolat statisztikailag szignifikánsnak tekinthető. A kis országok előtt álló lehetőségek közül a munkanélküliségi ráta csökkentése hat a területigény csökkenésének irányában. Az intenzívebb K+F tevékenység az ökológiai lábnyom növekedését eredményezi.

Az EU-ra vetített elemzés során a lineáris regresszió alkalmazása mellett döntöttem, azonban más regressziós egyenleteket is tesztem (pl.: parabolikus, logisztikus) Az SPSS-ben lefuttatott regressziós számítások alapján elvetettem az alternatív megoldásokat, mivel jellemzően nem szolgáltak szignifikánsabb eredménnyel. A paraméterek nehezen értelmezhetőek, illetve további felhasználásuk is nehézkesebb, mint az általam alkalmazott lineáris regresszió esetén.

A statisztikai elemzés során több faktort, illetve ezen faktorok több időszakra vonatkozó adatait alkalmaztam, valamint a GCI mellett az ökológiai lábnyom is tesztelésre került. Ezen jelentős számú változó mellett közel száz alkalommal futattam le a regressziós elemzést. Tekintettel arra, hogy az egyes egyenlittipusok eltérő számú paraméterekkel rendelkeznek, valamint az elemzések száma is igen magas, az összefoglaló táblázat készítését elvettem. Néhány példán keresztül szemléltetve belátható, hogy a lefuttattott regressziós egyenletek közül a lineáris egyenletek paraméterei bizonyultak a legmegbízhatóbbnak. [12. számú melléklet]

5.2. A kérdőíves kutatás eredményei – Magyarországra vetített elemzés

Az észak-magyarországi régió magában foglalja Nógrád, Borsod-Abaúj-Zemplén és Heves megyét. Jelen kutatás a Heves megyei Gyöngyösi kistérségbe tartozó önkormányzatok válaszait tartalmazza. A 23 megkérdezett által visszaküldött kérdőívek alátámasztják azon elképzelést,

¹A regressziós egyenlet paraméterei közé a munkanélküliségi ráta nem került be, tekintettel arra, hogy a legjobb magyarázó erővel rendelkező egyenlet hatását csökkentette e változó bevonása.
miszerint a kistérség települései között olykor nagy differenciák mutatkoznak meg életszínvonal tekintetében (22. ábra).

22. ábra: A kérdőíves kutatásban résztvevő települések osztályozása versenyképességük szubjektív megítélése szerint

Forrás: Saját szerkesztés

Túlnyomó többségben olyan települések szerepelnek a kutatásban, amelyek átlagosan fejlettnek tekinthetőek, de a mintában 22% az elmaradott, míg 17% a fejlett térségek aránya.

Az életszínvonal másik indikátora a munkanélküliségi ráta. Ahogy a versenyképességben, úgy a foglalkoztatás hatékonyságában is igen eltérőek a mintában szereplő térségek.

A 23. ábrában feltüntetett válaszok arra engedtek következtetni, hogy a munkanélküliségi ráta nagyjából 3% és 20% között változik.

23. ábra: A mintában szereplő települések jelenlegi munkanélküliségi rátája

Forrás: Saját szerkesztés
A kategóriákba sorolás során kiderül, hogy némileg túlsúlyban vannak az elmaradott települések. A vizsgált esetek 37%-ban 15%-nál magasabb munkanélküliségi rátát állapítottak meg. A munkanélküliek aránya némiképp összefügg a versenyképességgel, ugyanis a válaszok alapján a versenyképesség és a makromutató között pozitív irányú kapcsolat áll fenn.

A legtöbb válaszadón túlnyomó többsége szem előtt tartja a társadalmi felemelkedés kérdéskörét, és ennek szellemében olyan programokat, elképzeléseket valósítanak meg, amelyekkel számottevően igyekeznek növelni a település életszínvonalát. Leggyakrabban az oktatás fejlesztése és a munkahelyteremtés kerül a középpontba. Egyes településekben nagy hangsúlyot fent a lemezek, szociális segélyek és az önkormányzatok közötti kapcsolatok közötti kapcsolatokban. Az önkormányzatok megfelelő intézkedéseket szükségessé nyújtanak a munkanélkülég elkerülésére.

A válaszadók túlnyomó többsége szem előtt tartja a társadalmi felemelkedés kérdéskörét, és ennek szellemében olyan programokat, elképzeléseket valósítanak meg, amelyekkel számottevően igyekeznek növelni a település életszínvonalát. Leggyakrabban az oktatás fejlesztése és a munkahelyteremtés kerül a középpontba. Egyes településekben nagy hangsúlyt fent a lemezek, szociális segélyek és az önkormányzatok közötti kapcsolatok közötti kapcsolatokban. Az önkormányzatok megfelelő intézkedéseket szükségessé nyújtanak a munkanélkülég elkerülésére.

A válaszadók túlnyomó többsége szem előtt tartja a társadalmi felemelkedés kérdéskörét, és ennek szellemében olyan programokat, elképzeléseket valósítanak meg, amelyekkel számottevően igyekeznek növelni a település életszínvonalát. Leggyakrabban az oktatás fejlesztése és a munkahelyteremtés kerül a középpontba. Egyes településekben nagy hangsúlyt fent a lemezek, szociális segélyek és az önkormányzatok közötti kapcsolatok közötti kapcsolatokban. Az önkormányzatok megfelelő intézkedéseket szükségessé nyújtanak a munkanélkülég elkerülésére.

Összességében az önkormányzatok mintegy negyede foglalkozik aktuálisan is a biomassza energetikai hasznosításával. A mezőgazdasági melléktermékek (például: szőlővénigye) fűtőanyagként való alkalmazása egyértelműen egy ilyen kezdeményezés. Jellemzően az ővodák és iskolák energiahatékonysági javító projektek megvalósítása van folyamatban. A versenyképesség-alapú elemzés rámutatott arra, hogy a központi politikai ideológia kulcsszerepe a biomassza-hasznosítással. Mindezek ellenére a válaszokból arra lehet következtetni, hogy a térségek nagyrészt nem foglalkoznak a bioenergia hasznosításával.

Ennek egyrészét az lehet az oka, hogy a legtöbb önkormányzat nagy jelentőséget tulajdonít egyes külső tényezőknek. A korábban említett támogatás szerepének fontossága rávilágított arra, hogy a központi politikai ideológia kulcsszereppé vált a megkérdezettek számára a településfejlesztés vonatkozásában. (24. ábra)
24. ábra: A versenyképességre ható külső tényezők fontossága (1-11-es skálán)

A válaszadók szerint a központi politikai irányvonalak mellett a gazdasági folyamatok befolyásolják leginkább térségük versenyképességét. Annak ellenére, hogy bizonyos tényezők dominánsnak tűnnek, az egyes önkormányzatok másképp látják az adott faktorok szerepét. A fenti elemzést versenyképességi alapon elvégezve a 20. táblázatot kapjuk eredményül.

20. táblázat: A megkérdezettek hány százaléka tartja kifejezetten fontosnak a vizsgált tényezőt

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Elmaradott település</th>
<th>Átlagosan fejlett település</th>
<th>Versenyképes település</th>
</tr>
</thead>
<tbody>
<tr>
<td>Politikai tényezők</td>
<td>80,0%</td>
<td>78,6%</td>
<td>50,0%</td>
</tr>
<tr>
<td>Jogi tényezők</td>
<td>60,0%</td>
<td>35,7%</td>
<td>50,0%</td>
</tr>
<tr>
<td>Gazdasági tényezők</td>
<td>100,0%</td>
<td>85,7%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Társadalmi tényezők</td>
<td>100,0%</td>
<td>64,3%</td>
<td>25,0%</td>
</tr>
<tr>
<td>Környezeti tényezők</td>
<td>60,0%</td>
<td>78,6%</td>
<td>50,0%</td>
</tr>
<tr>
<td>Technológiai tényezők</td>
<td>60,0%</td>
<td>64,3%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A versenyképesség növekedésével egyre lényegtelenebbeknek tűnnek a politikai tényezők, ugyanakkor középpontba kerül az innováció. Az elmaradott térségek kiemelten fontosnak tartják a társadalmi folyamatokat, míg a versenyképes települések képviselőinek negyede érzi fontosnak, hogy milyen szociális folyamatok mennek végbe. A gazdasági tényezőket versenyképességtől függetlenül fontosnak tartják. Összességében a globális folyamatok nagyban meghatározzák a települések fejlődési lehetőségeit.
Egy másik, esetleges befolyásoló tényező a térség lakosságának alulképzettsége. Az önkormányzatok véleménye alapján a helyi lakosok leginkább a szaktudást nem igénylő munkakörök betöltésére lehetnek alkalmasak.

A 25. ábra arról tanúsítodik, hogy a településeken jellemzően a szántóföldi, az erdészeti munkára lehet találni alkalmas munkaerőt.

![Diagram]

25. ábra: Van-e az adott településen az egyes pozíciók betöltésére alkalmas munkaerő?

Forrás: Saját szerkesztés

Az iskolázatlansok magas arányát támasztja alá továbbá, hogy a válaszok szerint kevés az olyan munkaerő, aki az erőművekben és a kutatóműhelyeken végzett tevékenységehez megfelelő tudásanyaggal rendelkezik. Mindezek ellenére az elemzés rámutatott arra, hogy az elmaradott térségben nagyrészt megvan a munkaerő mind a fizikai, mind a szellemi munka elvégzésére. Előbbi esetben a megkérdezettek 80%-a, míg az utóbbiban a 40%-a úgy érzi, hogy megfelelő invesztíció esetén a helyi lakosok képesek lennének elvégezni a munkát. A fejlettebb településeken ezek az arányok csökkennek. A versenyképesség biztosítani tudják a megfelelő munkaerő állományt.

Ahogy azt a 21. táblázat mutatja, az előzetes várakozások szerint a zöldenergia-termelés az elkövetkezendő években szinte biztosan nem fog számottevően növekedni.

21. táblázat: Van-e esély arra, hogy térségükben számottevően nő a zöldenergia-termelés?

<table>
<thead>
<tr>
<th>A zöldenergia-termelés számottevő növekedésének esélye</th>
<th>Minimális esély van</th>
<th>Reális esély van</th>
<th>Nagy esély van</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 éven belül</td>
<td>80%</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>3-5 éven belül</td>
<td>17%</td>
<td>70%</td>
<td>13%</td>
</tr>
<tr>
<td>10 éven belül</td>
<td>0%</td>
<td>32%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

Az önkormányzati jövőkép már kedvezőbbnek tünik 2020 környékére vonatkozóan, ugyanis a válaszadók 70%-a lát reális esélyt a zöldenergia térnyerésére. A települések kétharmadában úgy gondolják, hogy 2025 körül már nagy esélye van a zöldenergia-termelés térnyerésének. Amennyiben ez az arány ténylegesen megvalósul, Gyöngyös kistérség jelentősen csökkenteni tudná a környezetre rönt terheket.

A jövőre vetített piacbővítés esélye nagyban függ az adott település versenyképességétől. (22. táblázat)

22. táblázat: Van-e esély arra, hogy térségükben számottevően nő a zöldenergia-termelés? – versenyképesség szubjektív megítélése alapján

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Esély 1-2 éven belül</th>
<th>Esély 3-5 éven belül</th>
<th>Esély 10 éven belül</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimális</td>
<td>Reális</td>
<td>Nagy</td>
</tr>
<tr>
<td>Elmaradott település</td>
<td>80,0%</td>
<td>20,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Átlagosan fejlett település</td>
<td>100,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Versenyképes település</td>
<td>25,0%</td>
<td>50,0%</td>
<td>25,0%</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

Azon megkérdeztettek, akik úgy gondolják, hogy a térségük kompetitív, kevesebb idő elteltével gondolják reális elvárásnak a zöldenergia-termelés növekedését. 1-2 éven belül várhatóan nem fognak változni a jelenlegi mutatószámok, de 10 éven belül az önkormányzatok nagy része valószínűsíti, hogy az adott település zölebbé válik.
Az önkormányzatok egy része ugyan már most szorgalmazza a megújuló energiaforrások térnyerését, de a lakosság attitűdje meglehetősen vegyes képet mutat. A térségben megvalósuló, biomassza energetikai hasznosítását szorgalmazó projekt fogadtatása mindenféle olyan tényező, amely alapjaiban meghatározhatja egy térség jövőbeli importfüggőségének alakulását. A lakossági attitűdöt a 26. ábra szemlélteti.

26. ábra: Mit gondol, a lakosság támogatna-e egy, a biomassza energetikai hasznosítását célzó projekt megvalósulását?

Forrás: Saját szerkesztés

A válaszok arra engednek következtetni, hogy a lakosság szelíd közönség venné tudomásul egy, a biomassza energetikai hasznosítását célzó projekt megvalósítását. A legtöbben egyetértenének a projekt háttérben húzódó ideológiával, de anyagilag és önkéntes munkával nem támogatnák a beruházást. A kérdőív es felméréseben szereplő indoklások közül mindenféle meg kell említeni egyet, amelyen mondatai elgondolkodtak.

„Az emberek többnyire rosszul reagálnak a változásokra, ha azok nem járnak közvetlen személyes haszonnal. Ilyenkor előtérbe kerülne olyan aggodalmak, melyekkel alapvetően nem foglalkoznak (természetvédelem, szagok...) és ha elkezdének problémát keresni, akkor vagy találnak valósat vagy kreálnak egyet.”

A kérdőív felméréseben szerepelnek olyan támogatási formák, amelyek közvetlen nem járnak haszonnal, őm jelentős ráfordítást igényelnek. Az anyagi hozzájárulás mellett az önkéntes munka hasonlóképp nagy áldozatot kíván a lakosság részéről.

A fenti elgondolásnak megfelelően több esetben megfigyelhető, hogy közvetlen haszonnal nem járó támogatási formákkal szemben tanúsított negatív hozzáállás egyben az erkölcsei és a munkaalapú (jövedelem ellenében végzett munka) támogatás mérséklődését is eredményezi. Ez
azt jelenti, hogy azok, akik nem kívánnak semmilyen áldozatot hozni a megújuló energiaforrások térnyerése során, kevésbé pártolják az elképzelést és munkabér ellenében sem dolgoznának szívesen az adott projekt keretein belül.

A megkérdezettek válaszait befolyásolta, hogy az adott települést mennyire gondolják kompetitívnek. A támogatás mértéke között tapasztalható különbség az anyagi hozzájárulás tekintetében a legszámottevőbb. A versenyképes településeken megvalósuló projekteket a lakosok nagy része anyagilag is támogatná. Ugyanezen településeken számíthatunk a legnagyobb volumenű önkéntes munkaerőre is.

Mivel a települések jellemzően nem igazán kompetitívek, a globális adatokból kell kiindulnunk, amely csak az erkölcsi támogatást és a jövedelem ellenében történő munkavállalást foglalja magában. Ebből következően kérdéses azon gazdálkodó szervezet profitabilitása, amely a zöld versenyképesség növelését irányozná elő.

A 27. ábra szerint az önkormányzatok többsége úgy gondolja, hogy az általuk képviselt település jellegzetességei lehetővé teszik a potenciális gazdasági szervezetek számára, hogy nyereségesen működjjenek.

27. ábra: Ön szerint tudna-e nyereségesen működni egy olyan gazdálkodó szervezet a térségben, amely a biomassza energetikai hasznosításával foglalkozik?

Forrás: Saját szerkesztés

Mindösszesen 13% véli úgy, hogy nagy valószínűséggel csak veszteség realizálása mellett lehet megújuló energiaforrással foglalkozó vállalatot működtetni az adott településen.

Habár az önkormányzatok általános attitűdje kedvezőnek mondható, egyes esetekben ez nem mutatkozik meg. A válaszadók ismerik a biomassza energetikai hasznosításával járó, elméletben megfogalmazott gazdasági és társadalmi előnyöket, azonban abban már nem értenek egyet, hogy ezen kedvező változások a gyakorlatban is megvalósulnak-e.
A legtöbb önkormányzat esetében a biomassza energetikai hasznosítása még nem megoldott. A 28. ábrán látható adatok szerint a jövőre vetített alkalmazási területek közül a válaszadók szerint a közintézmények fűtésére való felhasználása hozhatja a legnagyobban hasnot.

28. ábra: A biomassza energetikai hasznosítás hatásaira vonatkozó vélemények

Forrás: Saját szerkesztés

Mintegy 40% szerint a biomasszából történő energiatermelés szinte semmilyen hatással nincs a munkaerőpiacra és az importfüggőségre. Az önkormányzatok eltérő véleménye leginkább a versenyképesség szerinti bontásból mutatkozik meg.

A jelenlegi helyzetértékelés alapján (23. táblázat) az elmaradott térségek és a kompetitív települések foglalkoznak a biomassza energetikai hasznosításával.

2. állítás: A biomassza energetikai hasznosítása pozitív hatással van a versenyképességre.

3. állítás: A biomassza, mint energiaforrás, képes lehet a közüzemek (iskolák, önkormányzatok,...) teljes hőenergia iránti igényét fedezni.

4. állítás: A biomassza támogatni tudná a munkanélküliség csökkentését szorgalmazó intézkedéseket.

5. állítás: A biomassza hasznosítása csökkentené a térség importfüggőségét.

1. állítás: A biomassza energetikai hasznosítására nagy figyelmet fordítanak a térségükben.
2. állítás: A biomassza energetikai hasznosítása pozitív hatással van a versenyképességre.
3. állítás: A biomassza, mint energiaforrás, képes lehet a közüzemek (iskolák, önkormányzatok,...) teljes hőenergia iránti igényét fedezni.
23. táblázat: A biomassza energetikai hasznosítására vonatkozó állításokkal egyetértők aránya – versenyképesség szubjektív megítélése alapján

<table>
<thead>
<tr>
<th>Állítás</th>
<th>Elmaradott település</th>
<th>Átlagosan fejlett település</th>
<th>Versenyképes település</th>
</tr>
</thead>
<tbody>
<tr>
<td>A biomassza energetikai hasznosítására nagy figyelmet fordítanak a térségükben.</td>
<td>60,0%</td>
<td>14,3%</td>
<td>50,0%</td>
</tr>
<tr>
<td>A biomassza energetikai hasznosítása pozitív hatással van a versenyképességére.</td>
<td>60,0%</td>
<td>21,4%</td>
<td>75,0%</td>
</tr>
<tr>
<td>A biomassza, mint energiaforrás, képes lehet a közüzemek (iskolák, önkormányzatok,...) teljes hőenergia iránti igényét fedezni.</td>
<td>80,0%</td>
<td>35,7%</td>
<td>100,0%</td>
</tr>
<tr>
<td>A biomassza támogatni tudná a munkanélküliség csökkenését szorgalmazó intézkedéseket.</td>
<td>20,0%</td>
<td>21,4%</td>
<td>75,0%</td>
</tr>
<tr>
<td>A biomassza hasznosítása csökkentené a térség importfüggőségét.</td>
<td>40,0%</td>
<td>21,4%</td>
<td>75,0%</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

Az átlagos fejlettséggel rendelkező községek önkormányzatai igen pesszimistának tűnnek a téma vonatkozásában. A egyes állításokkal egyetértők aránya azt is bemutatja, hogy a fejlett régiók már látják a bioenergia gazdasági és társadalmi következményeit.

A munkanélküliségre vetített hatás számszerűsítése során kiderült, hogy ebben a vonatkozásban is igen heterogének az egyes önkormányzatok. Ezt támasztja alá a 24. táblázat.

24. táblázat: A biomassza energetikai hasznosításával foglalkozó projekt hatása a munkanélküliségi rátára

<table>
<thead>
<tr>
<th>A munkanélküliségi ráta csökkentési üteme</th>
<th>Minimális elvárás</th>
<th>Átlagos elvárás</th>
<th>Maximális elvárás</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 év múlva</td>
<td>0%</td>
<td>13,9%</td>
<td>33%</td>
</tr>
<tr>
<td>3 év múlva</td>
<td>1%</td>
<td>25,8%</td>
<td>53%</td>
</tr>
<tr>
<td>5 év múlva</td>
<td>3%</td>
<td>35,6%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

Mivel nagyon nehéz precízen meghatároznii a keletkező munkahelyek számát, felmérésemben a munkanélküliségi rátára vetített hatást vizsgálok, amely megközelítőleg ad becsűlést arra vonatkozóan, miképpen változik a település lakosságának összetétele a gazdasági aktivitás tekintetében. Ezek alapján a legpesszimistább és a legoptimistább vélemények között jelentős differenciát tapasztalhatunk. Az általános elképzelés szerint folyamatosan bővül a
foglalkoztatottak száma, azonban volt, aki 3%-os munkanélküliségi ráta csökkenésre számít, míg több megkérdezett a mutató 50%-os nagyságrendű csökkenését várja.

A várt csökkenés ütemét nagyban befolyásolja, hogy az adott önkormányzat milyen mértékben várja a kedvező környezeti tényezőket.

A 25. táblázatban, a lineáris korreláció alkalmazásával felvázolt paraméterek arra engednek következtetni, hogy a környezeti tényezők fontossága és az elvárt munkanélküliségi ráta által bekövetkező csökkenés üteme között negatív kapcsolat áll fenn.

25. táblázat: A környezeti tényezők befolyásoló hatása és az elvárt munkanélküliségi ráta csökkenése közötti összefüggés

<table>
<thead>
<tr>
<th>A munkanélküliségi ráta elemzésének ideje</th>
<th>b0</th>
<th>b1</th>
<th>P</th>
<th>R-négyzet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 év múlva</td>
<td>1,316</td>
<td>-0,050</td>
<td>0,001</td>
<td>0,409</td>
</tr>
<tr>
<td>3 év múlva</td>
<td>1,302</td>
<td>-0,062</td>
<td>0,001</td>
<td>0,421</td>
</tr>
<tr>
<td>5 év múlva</td>
<td>1,196</td>
<td>-0,061</td>
<td>0,012</td>
<td>0,276</td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

A környezeti tényezők fontossága és a munkanélküliségi ráta változása iránti elvárás között releváns kapcsolat áll fenn. Ennek értelmében minél nagyobb szerepet tulajdonítanak a környezeti tényezőknek a megkérdezettek, annál nagyobb mértékű foglalkoztatási hatást várnak el. Habár a kapcsolat relevánsnak minősül, a rövidtávú hatást precízébben írja le a kvadratikus alakra hozott regressziós egyenlet. A parabola alakot felvevő függvény hasonló eredményeket mutat, mint a lineáris regresszió, azonban közel 70%-os magyarázóerővel rendelkezik. A kvadratikus regresszióból deriválással vázolható fel egy olyan hipotetikus adatpont, amely korlátot jelent a függő változó értékében. Tekintettel arra, hogy az adatpontok száma viszonylag csokély, a szélsőérték számolása nem lenne módszertaniág megalapozott. A négyzetes függvény rövid- és középhosszú távon jobb magyarázatot ad az adatok alakulására, azonban a hosszútávú folyamatokat már nem képes leírni megbízhatóan, mint ahogy a lineáris regresszió is vesztett némiképp statisztikai relevanciájából.

Azon megkérdezettek, akik pozitíván értékelik egy, a biomasszával foglalkozó üzem létrehozását, nagyobb valószínűséggel várják el a munkanélküliség jelentős mértékű csökkenését.

A kérdőívben szereplő kérdések jól megvilágítják, hogy milyen attitűddel rendelkeznek az önkormányzatok a biomassza energetikai hasznosítása vonatkozásában. A kutatás attitűdkéréseit összegezve és azokból egy együtthatót előállítsa számszerűsíthető, hogy az illetékesek hány százaléka tekint kivételes lehetőségként a zöldenergiára. (29. ábra)
29. ábra: A kérdőíves felmérésben szereplő önkormányzatok attitűdje

Forrás: Saját szerkesztés

A megkérdezett önkormányzatok jelentős része semleges attitűddel rendelkezik. Az adatok arra engednek következtetni, hogy a válaszadók habár bíznak abban, hogy pozitív hatása lesz a biomassza energetikai hasznosításának, egyelőre még nem támasztanak nagy elvárásokat. A kérdőíves felmérés rámutatott arra, hogy míg a kistérség településeinek mintegy 5%-a pesszimista a megújuló energiaforrások vonatkozásában, addig hozzávetőlegesen minden ötödik önkormányzat hozzáállásában egyértelműen a pozitív szemlélet érvényesül. A kompetitívebb területek minimálisan pozitívabb attitűddel rendelkeznek, de az eltérés nem annyira jelentős, hogy befolyásolná az aggregált elemzés eredményét.

5.3. Új és újszerű tudományos eredmények

A disszertáció során bemutatott elemzésekből a következő új és újszerű tudományos eredményeket fogalmazom meg:

1. A rangkorreláció- és a regresszió-számítás alkalmazásával bizonyítottam, hogy a megújuló energiaforrások aránya és a gazdasági jellegű versenyképességi mutató – nevezetesen a GCI – között nem mutatható ki statisztikailag szignifikáns kapcsolat, a két tényező között mindössze eseti összefüggés áll fenn.
2. Az Európai Unió tagállamok körében elvégzett kutatáson eredményeként azt tudom megfogalmazni, hogy sem a nagy-, sem a kis országokra vetítve nem állítható fel olyan modell, amellyel a versenyképesség megbízhatóan előre jelezhető. A megújuló energiaforrások rátája mellett a biomassza részaranya, a munkanélküliségi ráta, a K+F GDP-ben kifejezett százalékos értéke és az egy főre vetített emisszió egyaránt csak bizonyos feltételek mellett mutatott összefüggést az eredményváltozóval.

3. Megerősítést nyert számomra, hogy a GCI és az ökológiai lábnyom sem képes önállóan maradéktalanul mérni egy adott ország fejlettségét. Egyik mutatószám alkalmazása sem elégséges egy fenntartható fejlődésen alapuló elemzés során.

4. A nemzetgazdasági szintű elköteleződés megmutatkozik a kistérségek pozitív attitűdjében, továbbá a biomassza energetikai hasznosítása előnyösen hat a település mutatóira, azonban egyes esetekben a települések nem osztják azon nézeteket, amelyeket a szakirodalom vázol fel a várható hatást tekintetében.

5. Az önkormányzatokkal szemben a lakosság csak passzív támogatja a biomassza hasznosítására irányuló elképzeléseket, az induló projektak anyagi támogatásra és önkéntes munkára nem számítanak. Ezek ismeretében megállapítottam, hogy a biomassza térhódításához szükséges társadalmi összefogás nem mutatkozik meg.

6. KÖVETKEZTETÉSEK, JAVASLATOK

A szakirodalmi áttekintést követő, makroadatok elemzésére irányuló kutatás számos tanulsággal szolgált. A világszinten történő elemzés vonatkozásában lényegében eseti összefüggéseket kaptam. Ahogy egyre több változót standardizáltam, a kapcsolatok egyre relevánsabbak lettek, ugyanakkor az is kiderült számomra, hogy a megújuló energiaforrásokkal foglalkozó kutatásokat célszerű térségek szintjén elvégezni.

Mindezek ellenére, az adatbázisokból kinyert információik elemzése elégséges adatokat nyújtott arra vonatkozóan, hogy hipotéziseimet értékelni tudjam.

1. hipotézis

Az Európai Uniós tagországok egyes makromutatóiból kiindulva a megújuló energiaforrások felhasználása szignifikáns kapcsolatban áll a versenyképességgel. A korreláció nem feltétlen egy időpontra vonatkozik, hanem sokkal relevánsabban kimutatható egy meghatározott időszakra vetítve. A biomassza részaránya azonban nem korrelál a versenyképesség mértékével, mivel az országok adottságai és az energiaszerkezete eltérő.

A statisztikai elemzés során az időszakra vonatkozó adatokban sokszor erős torzítás mutatkozott. Az intenzív változás sokszor eredményezett olyan outlier adatpontokat, amelyek nehezen értelmezhetővé tették az adatokat. Mindezek ellenére számos esetben kaptam releváns kapcsolatot az elemzésbe bevont négy faktor és az elemzett mutató között.

Az egyik ilyen tanulság alapján kijelenthető, hogy habár a megújuló energiaforrás is több esetben releváns magyarázóerőt képviselt, a biomassza energiaszerkezetben mutatott részaránya és/vagy a fásszárú növényekből és a megújuló hulladékokból előállított energia elősegíti a verseny gazdaság fejlődését.

Mindezek alapján a hipotézist: RÉSZBEN ELFOGADOM.

2. hipotézis

Az Európai Uniós tagországok elemzésbe bevont makroadatok egymással megmagyarázzák a versenyképességi mutató alakulását, amelyre a megújuló energiaforrások aránya mellett befolyással van az innováció, a munkaerőpiac és az adott ország ÜHG-emissziója.

Akár a rangkorreláció, akár a lineáris regresszió-számíthatás esetében szinte egyetlen esetben sem sikerült kettőnél több magyarázó változót találni. Az esetleges szignifikáns kapcsolatok sokszor csak azért voltak kimutathatóak, mert a csekély mintaelemszámú adathalmazból kiszűrtém az outlier adatpontokat. E tények arra engednek következtetni, hogy habár a faktorok kapcsolatban állnak a versenyképességgel, annak iránya és nagysága nem egyértelmű. Tendenciózus összefüggést a bevont változók között nem találtam.

Mindezek alapján a hipotézist: ELUTASÍTOM.
3. hipotézis

A makroelemzésbe bevont változók közül a megújulók részaránya, valamint az ÜHG-emisszió az ökológiai lábnyommal, míg a munkanélküliségi ráta és a K+F aránya a GCI-vel mutat relevánsabb kapcsolatot.

Az alkalmazott versenyképességi mutatók (GCI, ökológiai lábnyom) egymástól alapvetően eltérnek. Annak ellenére, hogy az ökológiai lábnyom nem standard versenyképességi mutató, sok esetben kimutatható kapcsolatban állt az elemzésbe bevont változókkal. A rangkorreláció-számtás során szembeöltő volt, hogy míg a GCI inkább a munkanélküliségi ráta és a K+F függvényében változott, addig az ökológiai lábnyom a megújuló energiaforrás részarányával és az ÜHG emissziójával korrelált. E különbség a regresszió-számtás során nem domborodott ki.

Több esetben arra a következtetésre jutottam, hogy a GCI valóban a hipotézisben megnevezett változókkal valóan korrelált, míg az ökológiai lábnyom a megújuló energiaforrásokkal és az ÜHG emissziójával nem korrelált. Ugyanakkor nem szabad figyelmen kívül hagyni, hogy egyszerre csak 10-13 adatpont került elemzésre, vagyis az exogén változóknak is nagy a szerepük.

Mindezek alapján a hipotézist: **RÉSZBEN ELFOGADOM.**

4. hipotézis

A Gyöngyös kistérségben található önkormányzatok pozitív attitűddel rendelkeznek a zöldenergia hasznosítás lokális hatásainak vonatkozásában. Elkötelezettek abban, hogy a település energiafelhasználását teljes mértékben átalakítsák, amelynek első lépéseit már megteették.

A kérdőíves felmérés eredményeire hagyatkozva jelenleg az önkormányzatok mintegy negyede foglalkozik a biomassza energetikai hasznosításával, illetve a válaszok alapján a termelés volumene középhosszútávon számottevően növekedhet. A települések nagy figyelmet fordítanak a pályázatokra, valamint arra hogy megismernéssék a lakossággal a zöldenergiához kapcsolható fogalmakat. Több térségben igyekeznek hasznosítani a mezőgazdasági melléktermékeket. Egyes településeken jelenleg a közintézmények (óvodák és iskolák) energiahatékonyságának fejlesztése van folyamatban, míg más önkormányzatok a fűtési rendszer modernizálását a közeljövőben tervezik megvalósítani. A válaszadók attitűdje a 0-1-es skálán inkább a magasabb értékek felé húzódnak.

Mindezek alapján a hipotézist: **ELFOGADOM.**

5. hipotézis

Az önkormányzatok szerint a biomassza térnyerését szolgáló beruházások munkahelyteremtő-képességgel rendelkeznek, amelynek következtében javulnak a lokális foglalkoztatási mutatók. Számos kedvező hatás közül kiemelkedik az újonnan létrejövő munkahelyek számának folyamatos emelkedése.

Tekintettel arra, hogy a disszertáció során is bemutattam, hogy a létesülő munkahelyek számát csupán becsülni lehet, a kérdőíves elemzés erre vonatkozó kérdésére adott válaszokból
következtetek a munkahely-teremtő képességre. A legpesszimistább önkormányzatok is javulást várnak a biomassza energetikai hasznosításától. A kérdőíves felmérés rávilágított arra, hogy a megkérdezettek átlagosan 1 év múlva 14%-os, míg 3 év múlva 26%-os csökkenést idézhettek elő a rátában. A válaszadók 5 év múlva a munkanélküliségi ráta 35%-os csökkenésére számítanak. Az önkormányzatok általános véleménye a foglalkoztatás alakulásával kapcsolatban kedvezőnek mondható.

Mindezek alapján a hipotézist: **ELFOGADOM.**

A disszertáció témáját adó biomassza versenyképességre gyakorolt hatásának vonatkozásában arra a megállapításra jutottam, hogy fontos a zöldenergia-termelést ösztönöző, de az elemzéseket elsősorban a kistérségre kell vetíteni. A zöld, versenyképes ország létrehozásához nem elegendő csupán gazdasági indikátorokat alkalmazni, illetve el kell fogadni azt a tényt, miszerint a történelmi adatok is arra engednek következtetni, hogy a gazdasági fejlődés erősen összefügg többek között az ökológiai faktorokkal. (Intergovernmental Panel on Climate Change, 2012) Ahogy azt Svédország és Finnország példája is mutatja, a fenntarthatóság magában foglalja az optimális gazdasági szerkezet mellett a természeti erőforrásokat, azok kihasználtságát is. E két ország tekinthető leginkább fenntarthatónak, hiszen tevékenységükkel mind egyre csökkentik a környezetre rótt terheket, ezáltal pedig tudatosabbá, zöldébbé válnak.

Ahhoz, hogy egy ország zöld és versenyképes legyen, különböző szinteket kell elérnie, valamint azokból továbblépnie. A fejletlen országokból az átmeneti korszakot jellemző fejlődő ország, majd fejlett ország lesz. Amennyiben a fejlett ország felismeri felelősségét és minden erejével a környezetbarát megoldásokat szorgalmazza, megindul a „zöld, versenyképes” ország kialakítása. (30. ábra)

![Diagram](image)

30. ábra: A zöld, versenyképes ország kialakításának fázisai

Forrás: Saját szerkesztés
• Fejlődő országok: Magyarország, Horvátország, Románia…

• Fejlett országok: Németország, Anglia, Belgium…

• Versenyképes, zöld országok: Svédország, Finnország.

A disszertáció során ismertetett környezeti tényezők és az alkalmazott statisztikai elemzések együttesen arra engednek következtetni, hogy a fenntartható fejlődés szezlemiségét középpontba kell helyezni. Az EU-s országok közül Svédország már teljesítette 2020-as vállalását, hiszen 49% felett van a megújuló energiaforrások részaránya (Tindale, 2009), azonban a legtöbb tagállamnak jól kidolgozott stratégia esetén van esélye a vállalást teljesíteni. Véleményem szerint a fenntarthatóságot szem előtt tartó szenárió az alábbi célok megvalósításán keresztül realizálódtat.

• Átfogó cél: a versenyképes zöld ország és zöld társadalom modelljének felállítása

• Kiemelt célok:
 • a megújuló energiaforrások részarányának növelése;
 • környezetvédelmi felelősség tudat kiépítése;
 • a társadalmi egyenlőtlenség felszámolása;
 • oktatási rendszer átszervezése.

A disszertáció alapkérdése, nevezetesen a zöld, versenyképes ország kialakítása csupán egy hosszútávú, jól átgondolt stratégia megvalósulásának eredményeképpen valósítható meg. A megújuló energiaforrások részarányának növelésére, az egyenlőtlenség felszámolására és a környezetvédelmi tudat kiépítésére a hosszútávú stratégia megvalósításán keresztül nyílik lehetőség. Ennek meghatározó elemei a következők:

• paradigmaváltás, szemléletformálás;
• az energetikai ismeretek beépítése a tantervbe;
gyakorlatorientált és lojális humán erőforrás;
energiafogyasztás racionalizálása;
a biomassza-potenciál minél hatékonyabb kiaknázása;
fenntarthatósági kritériumok betartása (a fenntartható fejlődés szellemiségében vonatkoztatott éves gazdasági növekedés, emisszió csökkentés és biodiverzitás);
zöldmarketing: könyvek, tankönyvek, videóanyagok, konferenciaanyagok lakosság részére történő kiadása, kutatások és a szakkifejezések hétköznapi nyelven történő megmagyarázása.

A hosszútávú stratégiában meghatározott ténylegyek egymástól elkülönülve és összefüggően is szolgálják a kiemelt célok elérését, amelyek tovább bonthatóak középhosszútávú elemkre. Úgy vélem, a legfontosabb célok a következők lehetnek:

- K+F tevékenység támogatása és a kutatóműhelyek decentralizálásának elősegítése;
- zöld gazdasági szektort elősegítő beruházások támogatása;
- a fenntarthatóság fogalmának megismertetése a lakossággal;
- környezetvédelmi felelősségtudat kiépítése;
- új (zöld) gyártási technológiák szorgalmazása;
- külső feltételek biztosítása (jogi értelmezések, támogatások biztosítása,…);
- NAT felülvizsgálása.

A középhosszútávú elképzelések felvázolása nélküli a stratégiai célok teljesítése során. Az általam felvázolt taktikai lépések és stratégiák során kiemelt hangsúlyt kapnak a paradigmaváltással és a humán erőforrással kapcsolatban álló ténylegyek. A globális problémák megoldására tett kísérélet előfeltétele a teljes társadalmi összefogás. Úgy gondolom, ehhez nélkülözhetetlen, hogy a hátrányos helyzetben lévők megismerjék megújuló energiaforrások jelentőségét. A paradigmaváltást és az energetikai ismeretek biztosítását célzó első lépések véleményem szerint az alábbiak:

- A NAT keretein belül az elkövetkezendő 2-3 évben minden hónapban 1 napot az energiatakarékos energiatakarékoságra kell fordítani. A tanulók (1-12. évfolyam) iskolán belül és teréspzmél keresztül ismerkednének meg a környezet megóvásának gyakorlati jelentőségével és elmaradásának káros következményeivel.

- A közgazdasági képzésben publikálni és általánosan tananyaggá kell tenni egy (több) olyan modellt, amely a racionalis vállalati működés feltételeként nem a profitmaximalizálást fogalmazza meg, hanem a környezeti ténylegőket helyezik középpontba (fenntartható fejlődés). A témában végzett kutatásokat kiemelten kellene támogatni.
Az elkövetkezendő tanévekben olyan iskolai tendert kell kiírni, amelyek alapján a környezetuddatosságra hívjuk fel a figyelmet. A pályázat során előtérbe kell helyezni a játkósságot, valamint az energiaszektorral kapcsolatos főbb ismeretek elsajátítását. Az iskolák részvételre és intenzív tanulásra vonatkozó motivációja kulcsfontosságú. A résztvevő, jól teljesítő iskolák extratámogatást, a versenyen részt vevő diákok pedig értékes tárgynereményeket vagy kézpénzt nyerhetnek.

Az egyetemi felvételi eljárásban nagyobb figyelmet kell szentelni a személyiségi jegyekre. Kiemelten figyelni kell a felvételt nyert hallgatók hozzáállására.

Az ERASMUS-program átstrukturálásánál szükséges kiemelni, hogy a tapasztalatszerzés mellett fontos a frissen végzett hallgatók vonatkozásában, hogy a külföldön megszerzett tapasztalatot Magyarországon hasznosítsa. Létrejöhet egy, az ERASMUS-hoz hasonló program, amely nemcsak a tanulmányokat, hanem a kutatásokat is támogatja, amennyiben a hallgató az eredményeket hazánkban kívánja felhasználni. A tender elnyerése egy nagyértékű, rendszeresen folyósított állami ösztöndíjat jelentene.

Az energetikai kérdésekben a lakosság aktivizálása elengedhetetlen. Fontos lépésnek tartom, hogy a társasházakban, illetve a saját ingatlan rendelkezők számára rendszeresen tartsanak a témában előadásokat energetikai szakemberek. Az ingatlan tulajdonosainak megjelenését kötelezővé kellene tenni. A racionalis energiafogyasztással rendelkező háztartások az energiaigényük fedezésére (fútés, elektromos áram, víz) állami, vissza nem térítendő támogatást kellene kapniuk.

Az energetikai ismeretek mérése fontos visszajelzése az energiastratégia hatékonyságának. Javasolom, hogy egy kompetenciasztor meghatározza a hallgatók és felnőtt lakosság ismereteit. A projekt megvalósításához energetikai szakemberek, frissen végzett kutatók és elemzők bevonását ajánlom.

A megújuló energiaforrások térnyerése, azon belül is a biomassza meghatározó szerepének megőrzése, valamint a lokális munkaerő foglalkoztatása a következő lépésekkel érhető el:

- Egy átfogó kutatás keretein belül minden térség számára elő kell irányozni azt az energiaszerkezetet, amely legjobban elősegítheti az energiapiaci lokalizálódását. Az optimális szerkezet egyben növeli a foglalkoztatottak számát, valamint növeli a térség lakosainak életszínvonalát.

- A felszín életményeinek függvényében azokon a területeken, ahol arra lehetőség mutatkozik, szorgalmazni kell a fás- és lágyszárú növények energetikai hasznosításának kiaknázását. A termelési eljárásnál prioritást élvez a fenntartható fejlődés, amelynek értelmében a helyi növénytermesztés növekedése olyan ütemben fejlődhet, ami nem veszélyezteti a következő generációk szükségleteinek kielégítését.

- Ha a kutatás arra a következtetésre jut, hogy nincs lehetőség a biomassza gazdaságos előállítására és hasznosítására, akkor a kutatók javasoljanak a befektetők számára egy olyan megújuló energiaforrást, amely az adott település adottságainak megfelel.
A javaslatra alapozó induló vállalkozásokat nagyobb támogatással célszerű ösztönözni.

Az induló vállalkozások számára biztosítani kell, hogy lehetőségük legyen gazdaságosan működni, valamint munkavállalóikat versenyképes bérrrel motiválni.

A fejlettebb technológia többsnyire nem jelenti a munkaerő számának emelkedését. Ennek ellenére az induló és működő vállalkozásokat fontos ösztönöznö technológiai megújulásra. Célszerű szem előtt tartani a munkahelyteremtő-képesség kiaknázását, ezért azon újításokat kell támogatni, amelyek a hosszútávú stratégiai célok elérése mellett jelentős mennyiségű munkahelyet teremtenek.

A Nemzeti Cselekvési Terv felvázolta, hogy milyen intézkedésekkel biztosíthatóak a külső tényezők. Fontosnak tartom, hogy a különböző szintek (EU, Magyarország, kistérségek) stratégiája egymással összhangban legyen. Kitüntetett figyelmet igényel a politikai, jogi rendszer stabilizálása, valamint a támogatási rendszer átláthatóvá tétele. Az egyszerűbb ügyintézés elősegíti, hogy kevesebb idő teljen el a támogatási igény benyújtása és az összeg felhasználása között. Az általam felvázolt stratégiai elképzelés szerint elengedhetetlenné vált az összekapcsolódás és a technológiai megújulás.

A leggyakrabban alkalmazott versenyképességi mutató, a GCI nem fejezi ki kellőképpen a megújuló energiaforrások térnyerésére fordított erőfeszítések nagyságát. Ebből következően javasalom, hogy a versenyképességet a gazdasági alapokon nyugvó mutató mellett egy olyan beazonosítási szintek is szemléltesse, amely a fenntarthatósággal áll szorosabb kapcsolatban. A környezeti értékelést magában foglaló mutatók közül az ökológiai lábnyom alkalmazása tűnik célszerűnek. Ezen mutató alapján meghatározható, hogy egy régió lakosságának mennyisége és az ökológiai lábnyom a területtel között. A GCI és az ökológiai lábnyom együttes alkalmazásával meghatározható, hogy egy régió háztartási erőforrásainak hatékonysága.

A nemzeti szintű stratégia mellett fontos az önkormányzatok előtt álló célok megvalósítása. Ennek megvalósításához a következő pontokat fontos érdemes megfigyelni:

- a kistérségek lakosságát meg kell ismerni és a megújuló energiaforrásokok, illetve rá kell mutatni, hogy milyen célt szolgálnak, illetve milyen oknál fogva szükséges alkalmazásuk (a kérdőíves kutatás rámutatott arra, hogy ezen lépések a közeljövőben megvalósításra kerülnek);
- fontos az alacsonyan képzettek oktatása, valamint foglalkoztatása (egyes önkormányzatok jövőbeli tervei között szerepel);
• szolgálni kell a népességmegtartó képességet, a jövő generációi számára vonzóvá kell tenni a vidéki életet (a kérdőívben több válaszadó is jelezte, hogy ezzel emelkedne a versenyképesség);

• fejleszteni kell az infrastruktúrát egyedül vagy szomszédos településsel együtt pályázva;

• a vidéki gazdasági élet fellendítéséhez szükség lenne arra, hogy az ottani életvitel vidéki jellege, ami turisztikai szempontból is értéket képviselne (a kérdőíves felmérés adatai szerint ez megint csak növelné a versenyképességet, amely így intenzívebbé tenné a helyi vállalkozások működését).

A környezeti és a gazdasági kihívásoknak egyaránt megfelelő zöld országok összefogása megfélelheti a makro- és a mikroszemlélet egyaránt fontos. A zöld ország zöld gazdaságának és társadalmának kialakítása, ami képes megvédeni az emberiséget önmagától.
7. ÖSSZEFOGLALÁS

A megújuló energiaforrások valódi megoldást jelentenek a világot fenyegető globális energiaválságra. A szakirodalom egybehangzóan arról ír, hogy a megújuló energiaforrások, azon belül is a biomassza energetikai hasznosítása csökkenti az energiafüggőséget, és lokális szinten felzárkóztatja az elmaradott településeket.

A legtöbb ország mára kidolgozta azon stratégiáinak körvonalait, amellyel nagyobb teret enged a megújuló energiaforrásoknak. 2013-ban Svédország volt a piacezvető, ahol az energiafelhasználás 52,1 %-át megújuló energiaforrásokból fedezték. Az Európai Unióban jellemzően a biomassza-hasznosítás kapja a legnagyobb hangsúlyt. Magyarországon a biomassza megújuló energiaforráson belüli részaránya 90 % körül alakul.

Disszertációmban célul tűztem ki, hogy számításokkal alátámasztom a megújuló energiaforrások és a versenyképesség között fennálló statisztikai kapcsolatot, valamint meghatározzom a biomassza energetikai hasznosítás munkahelyteremtő- és vidékfelzárkóztató-képességét.

Metaelemzés keretében két mutatót tesztemel; a GCI-t és az ökológiai lábnymotot. Az integráció szintjén elvégzett elemzésből arra a következtetésre jutottam, hogy nem állítható fel olyan többváltozós modell a mutatók alakulására, amellyel megbízhatóan előre lehetne jelezni egy ország fenntartható versenyképességét. Az adatbázisban a megújuló energiaforrások részarányát, a munkanélküliségi rátát, a K+F GDP arányos rátáját és az egy főre eső emissziót szerepeltettem.

A lokális hatások felmérésére egy kérdőív felmérést készítettem. A Győngyosi kistérség önkormányzataitól beérkezett válaszokból azt a következtetést lehet lefogalmazni, hogy hiányzik a társadalmi összefogás, és a biomasszával foglalkozó projekt támogatottsága is csupán hipotetikus. A felmérésből továbbá az is kiderült, hogy a helyi lakosok, iskolázottságuknak köszönhetően csak az alacsonyabb státuszú munkák betöltsére képesek. A kistérségeken munkakerületi különböző mutatkozik a szelemből munkák vonatkozásában.

A kutatási eredményekből bebizonyosodott, hogy az adott ország versenyképességének teljeskörű kiértékeléséhez nem elég egy mutatót bevonni az elemzésbe. A GCI és az ökológiai lábnym együtt alkalmazásával határozható meg, mely ország számít zöld, versenyképes országnak. Magyarországnak is az a célja, hogy ebe a körbe tartozzon, amely abban az esetben valósítható meg, ha egy jó kidolgozott, átfogó stratégia áll rendelkezésre.

A metaelemzésből és a kérdőív felméréből levont következtetésekre alapozva meghatározhatóak azon pillérek, amelyek a sikeres energiastratégia alapjait képezhetik. Úgy gondolom, célzerű lenne mélyebben elemezni a társadalmi folyamatokat és nagyobb hangsúlyt helyezni azokra. Alapjaiban szükséges megváltoztatni az oktatási rendszer intézményét, szorgalmazni kell a legszegényebb rétegek társadalmi felzárkóztatását. Ezen túlmenően kiemelt szerepe van a technológiai eljárások folyamatos, intenzív fejlődésének is.
8. SUMMARY

Renewable sources of energy could provide a real solution to the global energy crisis threatening the world. The scientific literature agrees that within the field of renewable energy sources, the utilisation of biomass reduces our energy dependence, and helps the underdeveloped regions catch up locally.

Most countries have worked out the outlines of the strategy with which they aim to support the growth of renewable energy industry. In 2013 Sweden took the lead, with 52.1% of their energy consumption provided by renewable energy sources. In the European Union, biomass seems to be the most prominent source. In Hungary, biomass accounts for approximately 90% of all renewable energy used.

In this dissertation, I aim to confirm the statistical connection between renewable energy sources, and competitiveness, and to uncover the crucial role of using biomass energy in creating job growth and regional economic development.

I tested for two indicators in the dissertation; the GCI and the ecological footprint. The analysis implemented at the level of the integration concluded, that a multivariate model, featuring these indicators, that could reliably predict the sustainability of competitiveness cannot be established. I featured renewable energy sources in proportion to non-renewable sources, the rate of unemployment, R&D in proportion to GDP, and emission per capita in the database.

I conducted a questionnaire survey for measuring local effects. The feedback I received from the municipality of Gyöngyös micro-region made it apparent that there is a lack of social collaboration, and the support of projects dealing with biomass is merely symbolic. The survey also revealed that due to the lack of adequate education of residents, they are only competent enough for low-status work. Hence, there is labour shortage in white-collar jobs throughout the micro-regions.

The results of the research conducted, suggest that only one indicator is not enough for the competitiveness of a given country. With the collective application of GCI and the ecological footprint, the list of the green competitive countries is easily defined. Hungary's aim is to belong to this circle. This can only be viable if there is an available well-worked-out, and comprehensive strategy.

Based on the analyses presented in the dissertation, the pillars that may provide the basis of the energy strategy are outlined. In my opinion the main emphasis should be on the modernisation of the educational system, motivating the social strata and investing in R&D equally.
Mellékletek:

1. számú melléklet

Felhasznált irodalom

ENERGY MARKET PRICE (2013): Hungary – Renewable energy incentive program

HITA (2012): Renewable energy in Hungary, Szerif Kiadó Kft., Budapest 32 p., https://www.awex.be/fr-BE/Infos%20march%C3%A9%20secteurs/Infosmarch%C3%A9s/Hongrie/Documents/Meg%C3%A9g%C3%A9jul%C3%A9g%E2%80%9C%20Energy%20ket%C3%A1ny.pdf In: Lekérdezés ideje: 2015. 01. 12.

PIAC & PROFIT (2015b): Magyarország: 60-70% esélyünk van átvézhetni a klímaváltozást,
http://www.piacesprofit.hu/klimablog/magyarorszag-60-70-az-eselye-hogy-atveszeljuk-at-a-
klimavaltzozast/ Keresőprogram: Google, Kulcsszavak: Magyarország: 60-70% esélyünk van
átvészelt a klímaváltozást, Lekérdezés időpontja: 2015. 11. 30.

PORTFOLIO (2014): Fordulat előtt a világ energiaellátása – Eltünnek az egyszerű fogyasztók,
http://www.portfolio.hu/vallalatok/energia/fordulat_elott_a_vilag_energiaellatasa_eltonnek_az_e
gyszeru_fogyasztok.204075.html Keresőprogram: Google, Kulcsszavak: Fordulat előtt a világ
energiaellátása, Lekérdezés időpontja: 2015. 11. 22.

PORTFOLIO (2015): A megújulók már a spájban vannak, http://www.canadian.hu/hirek_1/a-
megujulok-mar-a-spajban-vannak-56 Keresőprogram: Google, Kulcsszavak: A megújulók már
a spájban vannak, Lekérdezés ideje: 2015. 08. 16.

REITZIGERNÉ DUCSAI A. (2012): Emissziós jogok közgazdasági relevanciája, In:
Vezetésstudomány, XLIII (3), 52-64 p.

REKK (2011): Security of energy supply in Central and South-East Europe, AULA Kiadó,
Budapest, 284 p.

REMÉNYI K. (2013): A tűz örök energiaforrás – A szén és a fosszilis tüzelőanyagok a
természetben, Akadémiai Kiadó, Budapest, 340 p.

RENOUARD C. (2011): Corporate Social Responsibility, Utilitarianism, and the Capabilities

RUMPLER A. (2014): Termálvíz visszasajtolás Magyarországon 2014-ben,
http://azenkornyezetem.blogspot.hu/2014/02/termalviz-visszasajtolas-magyarorszagon.html
15.

TF-INFORMÁCIÓ (2016): Nincs mese, a megújuló energiában van a jövő, https://www.google.hu/?gws_rd=ssl#q=meg%C3%BAjul%C3%B3 energia+f%C3%B3zi%C3%B3 felvásárlás+2016 Keresőprogram: Google, Kulcsszavak: megújuló energia fúzió felvásárlás 2016, Lekérdézés ideje: 2016. 02. 25.

2. számú melléklet – ábrajegyzék

1. ábra: A kutatás logikai felépítése, általános sémája ... 4
2. ábra: A végső energiafelhasználás megoszlása (ezer t) ... 10
3. ábra: Az Európai Unió és Magyarország energiaszerkezete a végső felhasználás vonatkozásában, 2011 .. 12
5. ábra: A megújuló energiaforrások részaránya az EU28-ban és a tagországokban, 2013 (%) .. 16
6. ábra: A megújuló energiaforrások típusai .. 17
7. ábra: A biomassza alapú energiahordozók és azok hasznosítása ... 21
8. ábra: Az EU tagországok szilárd biomassza és megújuló hulladékok energetikai felhasználására vonatkozó trend 2004-2013 között .. 29
10. ábra: Magyarországon érvényesült bérek 2010-2015 között (Ft) ... 36

11. ábra: Magyarország energiasztratégiájának alappillérei .. 46
12. ábra: Az ökológiai lábnyom értéke az EU tagállamaiban .. 48
13. ábra: A területi elmaradottság öt fő tényezője ... 49
14. ábra: Az Euro árfolyama (Ft/€) .. 57
15. ábra: A beruházási igények várható alakulása 2030-ra .. 58
16. ábra: A megújuló energiaforrások ismertsége a választott egyetem hallgatói körében, 2011 .. 63
17. ábra: A kutatás-fejlesztésre fordított összeg a GDP százalékában, 2013 65
18. ábra: A szén-dioxid kibocsátásának megoszlása az egyes országok/régiók között, 2011/68 70
19. ábra: Az elmúlt 1000 év átlag-középhőmérséklete ... 70
20. ábra: A kutatás mutatószámainak logikai felépítése ... 75
21. ábra: Az EU tagállamainak GCI-mutatója az ökológiai lábnyom függvényében 82
22. ábra: A kérdőíves kutatásban résztvevő térségek osztályozása versenyképességük szubjektív megítélése szerint ... 89
23. ábra: A mintában szereplő települések jelenlegi munkanélküliségi rátája 89
24. ábra: A versenyképességre ható külső tényezők fontossága (1-11-es skálán) 91
25. ábra: Van-e az adott településen az egyes pozíciók betöltésére alkalmas munkaerő? .. 92
26. ábra: Mit gondol, a lakosság támogatna-e egy, a biomassza energetikai hasznosítását célzó projekt megvalósulását? .. 94
27. ábra: Ön szerint tud-e nyereségesen működni egy olyan gazdálkodó szervezet a térségben, amely a biomassza energetikai hasznosításával foglalkozik? .. 95
28. ábra: A biomassza energetikai hasznosítás hatásaira vonatkozó vélemények 96
29. ábra: A kérdőíves felmérésben szereplő önkormányzatok attitűdje 99
30. ábra: A zöld, versenyképes ország kialakításának fázisai ... 103
3. számú melléklet – táblázatjegyzék

1. táblázat: Hazánk energiamérlege ... 8
2. táblázat: Hazánk energiapotenciálja ... 17
3. táblázat: Az energiaerdőt képző fák osztályozása vágásforduló alapján .. 23
4. táblázat: A fásszárú energianövények tulajdonságai .. 23
5. táblázat: A dendromassza-típusok alkalmazási területei, előnyei és hátrányai 24
6. táblázat: Az Európai Unió tagországokban természeti erőforrásokból előállított energia fogyasztása (PJ) .. 28
7. táblázat: A biomassza energetikai hasznosításának legfontosabb előnyei és hátrányai... 33
8. táblázat: Magyarországi bérek eloszlása 2000-2010 között (ezer forint/év) 37
9. táblázat: A megújulók energetikai hasznosítása által keletkező munkahelyek számára vonatkozó becslések.. 38
11. táblázat: Az energetikai beruházások alakulása 2010-2013 között 58
12. táblázat: Magyarország szén-dioxid kibocsátása 2012-2013 .. 69
13. táblázat: A világ nagyhatalmainak néhány makromutatója, 2011 ... 81
14. táblázat: Rangkorrelációs együttható értéke .. 81
16. táblázat: Az ökológiai lábnyomra ható tényezők (2010-2013-as időszakra vetített változók) .. 85
18. táblázat: Az ökológiai lábnyomra ható tényezők (2013-as magyarázó változókkal) 87
20. táblázat: A megkérdezettek hány százaléka tartja kifejezetten fontosnak a vizsgált tényezőt .. 91
21. táblázat: Van-e esély arra, hogy térségükben számottevően nő a zöldenergia-termelés? 93
22. táblázat: Van-e esély arra, hogy térségükben számottevően nő a zöldenergia-termelés? – versenyképesség szubjektív megítélése alapján ... 93
23. táblázat: A biomassza energetikai hasznosítására vonatkozó állításokkal egyetértők aránya – versenyképesség szubjektív megítélése alapján .. 97
24. táblázat: Egy biomassza energetikai hasznosításával foglalkozó projekt hatása a munkanélküliségi ráta ... 97
25. táblázat: A környezeti tényezők befolyásoló hatása és az elvárt munkanélküliségi ráta csökkenése közötti összefüggés ... 98
4. számú melléklet

Rövidítések jegyzéke

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICS</td>
<td>Brazil, Russia, India, China, South-Africa</td>
</tr>
<tr>
<td>EKB</td>
<td>Európai Központi Bank</td>
</tr>
<tr>
<td>ELMŰ – ÉMÁSZ</td>
<td>Elektromos Művek – Észak-magyarországi Áramszolgáltató Vállalat</td>
</tr>
<tr>
<td>EMVA</td>
<td>Európai Mezőgazdasági Vidékfejlesztési Alap</td>
</tr>
<tr>
<td>ERM</td>
<td>European Exchange Rate Mechanism</td>
</tr>
<tr>
<td>EU</td>
<td>Európai Unió</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organisation of the United Nations</td>
</tr>
<tr>
<td>FVM</td>
<td>Földművelési és Vidékfejlesztési Minisztérium</td>
</tr>
<tr>
<td>GCI</td>
<td>Global Competitiveness Index</td>
</tr>
<tr>
<td>GYDT</td>
<td>A Gyakorlati Diplomácia Társasága</td>
</tr>
<tr>
<td>HITA</td>
<td>Hungarian Investment and Trade Agency</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IRENA</td>
<td>International Renewable Energy Agency</td>
</tr>
<tr>
<td>KHEM</td>
<td>Közlekedési, Hírközlési és Energiaügyi Minisztérium</td>
</tr>
<tr>
<td>KSH</td>
<td>Központi Statisztikai Hivatal</td>
</tr>
<tr>
<td>KRF</td>
<td>Károly Róbert Főiskola</td>
</tr>
<tr>
<td>MNB</td>
<td>Magyar Nemzeti Bank</td>
</tr>
<tr>
<td>MTA KRTK</td>
<td>Magyar Tudományos Akadémia Közgazdaság- és Regionális Tudományi Kutatóközpontja</td>
</tr>
<tr>
<td>MTI</td>
<td>Magyar Távirati Iroda</td>
</tr>
<tr>
<td>NFGM</td>
<td>Nemzetgazdasági Minisztérium</td>
</tr>
<tr>
<td>NAT</td>
<td>Nemzeti alaptanterv</td>
</tr>
<tr>
<td>NFM</td>
<td>Nemzeti Fejlesztési Minisztérium</td>
</tr>
<tr>
<td>NFT</td>
<td>Nemzeti Fejlesztési Terv</td>
</tr>
<tr>
<td>NFÜ</td>
<td>Nemzeti Fejlesztési Ügynökség</td>
</tr>
<tr>
<td>NKTH</td>
<td>Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
</tbody>
</table>
OMSZ Országos Meteorológiai Szolgálat
OTS Ocean Technology System
REKK Regionális Energiagazdasági Kutatóközpont
ÚVMP Új Magyarország Vidékfejlesztési Program
ÜHG Üvegházhatású gázok
WEF World Economic Forum

Országok rövidítése

AUT Ausztria
BEL Belgium
BUL Bulgária
CRO Horvátország
CZE Csehország
CYP Ciprus
DEN Dánia
ESP Spanyolország
EST Észtország
FIN Finnország
FRA Franciaország
GBR Egyesült Királyság
GER Németország
GRE Görögország
HUN Magyarország
IRL Írország
ITA Olaszország
LAT Lettország
LTU Litvánia
LUX Luxemburg
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAL</td>
<td>Máltta</td>
</tr>
<tr>
<td>NED</td>
<td>Hollandia</td>
</tr>
<tr>
<td>POL</td>
<td>Lengyelország</td>
</tr>
<tr>
<td>POR</td>
<td>Portugália</td>
</tr>
<tr>
<td>ROM</td>
<td>Románia</td>
</tr>
<tr>
<td>SLO</td>
<td>Szlovénia</td>
</tr>
<tr>
<td>SVK</td>
<td>Szlovákia</td>
</tr>
<tr>
<td>SWE</td>
<td>Svédország</td>
</tr>
</tbody>
</table>
5. számú melléklet

A nukleáris energia aránya az összes megtermelt elektromos energia százalékában

6. számú melléklet

Az Európai Uniós tagországok természeti tényezőkre vetített adatai
– energiafelhasználás (PJ)

<table>
<thead>
<tr>
<th>Ország</th>
<th>Szilárd biomassza + megújuló hulladék</th>
<th>Vízenergia</th>
<th>Szélenergia</th>
<th>Napenergia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUT</td>
<td>129,6</td>
<td>244,8</td>
<td>132,3</td>
<td>151,1</td>
<td>3,4</td>
</tr>
<tr>
<td>BEL</td>
<td>38,6</td>
<td>121,2</td>
<td>1,1</td>
<td>1,4</td>
<td>0,5</td>
</tr>
<tr>
<td>BUL</td>
<td>29,6</td>
<td>49,2</td>
<td>11,4</td>
<td>14,7</td>
<td>0,0</td>
</tr>
<tr>
<td>CRO</td>
<td>15,9</td>
<td>21,8</td>
<td>25,0</td>
<td>28,8</td>
<td>0,0</td>
</tr>
<tr>
<td>CYP</td>
<td>0,6</td>
<td>1,8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>CZE</td>
<td>65,3</td>
<td>129,9</td>
<td>7,3</td>
<td>9,8</td>
<td>0,0</td>
</tr>
<tr>
<td>DEN</td>
<td>87,4</td>
<td>140,1</td>
<td>0,1</td>
<td>0,0</td>
<td>23,7</td>
</tr>
<tr>
<td>ESP</td>
<td>198,0</td>
<td>289,5</td>
<td>111,9</td>
<td>132,4</td>
<td>56,2</td>
</tr>
<tr>
<td>EST</td>
<td>25,0</td>
<td>33,6</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>FIN</td>
<td>308,5</td>
<td>366,2</td>
<td>54,3</td>
<td>46,2</td>
<td>0,4</td>
</tr>
<tr>
<td>FRA</td>
<td>433,4</td>
<td>632,9</td>
<td>214,4</td>
<td>253,8</td>
<td>2,1</td>
</tr>
<tr>
<td>GBR</td>
<td>112,0</td>
<td>288,3</td>
<td>17,4</td>
<td>16,9</td>
<td>7,0</td>
</tr>
<tr>
<td>GER</td>
<td>434,8</td>
<td>987,2</td>
<td>72,3</td>
<td>82,8</td>
<td>91,8</td>
</tr>
<tr>
<td>GRE</td>
<td>39,9</td>
<td>50,3</td>
<td>16,8</td>
<td>22,8</td>
<td>4,0</td>
</tr>
<tr>
<td>HUN</td>
<td>35,3</td>
<td>70,7</td>
<td>0,7</td>
<td>0,8</td>
<td>0,0</td>
</tr>
<tr>
<td>IRL</td>
<td>7,2</td>
<td>16,7</td>
<td>2,2</td>
<td>2,1</td>
<td>2,4</td>
</tr>
<tr>
<td>ITA</td>
<td>137,3</td>
<td>565,7</td>
<td>152,4</td>
<td>190,0</td>
<td>6,6</td>
</tr>
<tr>
<td>LAT</td>
<td>49,5</td>
<td>56,5</td>
<td>11,2</td>
<td>10,5</td>
<td>0,2</td>
</tr>
<tr>
<td>LTU</td>
<td>33,7</td>
<td>46,5</td>
<td>1,5</td>
<td>1,9</td>
<td>0,0</td>
</tr>
<tr>
<td>LUX</td>
<td>1,5</td>
<td>5,5</td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>MAL</td>
<td>0,0</td>
<td>0,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>NED</td>
<td>63,4</td>
<td>116,5</td>
<td>0,3</td>
<td>0,4</td>
<td>6,7</td>
</tr>
<tr>
<td>POL</td>
<td>172,6</td>
<td>326,5</td>
<td>7,5</td>
<td>8,8</td>
<td>0,5</td>
</tr>
<tr>
<td>POR</td>
<td>116,5</td>
<td>117,5</td>
<td>35,5</td>
<td>49,4</td>
<td>2,9</td>
</tr>
<tr>
<td>ROM</td>
<td>131,2</td>
<td>159,7</td>
<td>59,4</td>
<td>53,8</td>
<td>0,0</td>
</tr>
<tr>
<td>SLO</td>
<td>19,7</td>
<td>27,9</td>
<td>14,7</td>
<td>16,6</td>
<td>0,0</td>
</tr>
<tr>
<td>SVK</td>
<td>15,4</td>
<td>38,9</td>
<td>14,8</td>
<td>17,5</td>
<td>0,0</td>
</tr>
<tr>
<td>SWE</td>
<td>330,8</td>
<td>458,3</td>
<td>262,1</td>
<td>221,0</td>
<td>3,1</td>
</tr>
</tbody>
</table>

Forrás: EUROSTAT, 2016abcde
7. számú melléklet

A munkanélküliségi ráta alakulása az EU28 tagországaiban (%)

Forrás: EUROSTAT, 2015e, Trading Economics, 2015
Az Európai Unió tagországok és néhány más ország GCI-mutatója

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgária</td>
<td>4.37</td>
<td>4.27</td>
<td>4.28</td>
</tr>
<tr>
<td>Chipre</td>
<td>3.54</td>
<td>3.58</td>
<td>3.60</td>
</tr>
<tr>
<td>Románia</td>
<td>3.46</td>
<td>3.59</td>
<td>3.60</td>
</tr>
<tr>
<td>Magyarország</td>
<td>4.28</td>
<td>4.30</td>
<td>4.30</td>
</tr>
<tr>
<td>Grécia</td>
<td>3.70</td>
<td>3.73</td>
<td>3.77</td>
</tr>
<tr>
<td>Švédország</td>
<td>3.74</td>
<td>3.86</td>
<td>3.90</td>
</tr>
<tr>
<td>Aljmaq</td>
<td>3.74</td>
<td>3.77</td>
<td>3.80</td>
</tr>
<tr>
<td>Norvégiá</td>
<td>3.73</td>
<td>3.80</td>
<td>3.80</td>
</tr>
<tr>
<td>Islandia</td>
<td>4.06</td>
<td>4.03</td>
<td>4.10</td>
</tr>
<tr>
<td>Kínai</td>
<td>3.58</td>
<td>3.64</td>
<td>3.67</td>
</tr>
<tr>
<td>Japán</td>
<td>3.55</td>
<td>3.60</td>
<td>3.61</td>
</tr>
<tr>
<td>Írország</td>
<td>3.57</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>Izrael</td>
<td>3.53</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>Ruusun</td>
<td>3.54</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>Libanon</td>
<td>3.43</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.40</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>3.36</td>
<td>3.45</td>
<td>3.46</td>
</tr>
<tr>
<td>Portugal</td>
<td>3.47</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Líbia</td>
<td>3.42</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Lettország</td>
<td>3.41</td>
<td>3.45</td>
<td>3.44</td>
</tr>
<tr>
<td>Tailândia</td>
<td>3.41</td>
<td>3.45</td>
<td>3.44</td>
</tr>
<tr>
<td>Peking</td>
<td>3.40</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Japán</td>
<td>3.39</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Egyiptom</td>
<td>3.38</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Új-AORIA</td>
<td>3.37</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>New Zealand</td>
<td>3.35</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Irak</td>
<td>3.35</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Peru</td>
<td>3.34</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Mauritius</td>
<td>3.33</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Ungarn</td>
<td>3.32</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Aljmaq</td>
<td>3.31</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Németország</td>
<td>3.30</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.29</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>India</td>
<td>3.28</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Törökország</td>
<td>3.27</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>El Salvador</td>
<td>3.26</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.25</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Australia</td>
<td>3.24</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Francia</td>
<td>3.23</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Indonézia</td>
<td>3.22</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.21</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.20</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Ugyar</td>
<td>3.19</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.18</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Hongkong</td>
<td>3.17</td>
<td>3.45</td>
<td>3.45</td>
</tr>
</tbody>
</table>

9. számú melléklet

Az EU tagországainak szén-dioxid kibocsátása 2012-2013-ban

<table>
<thead>
<tr>
<th>Ország</th>
<th>2012 1000t</th>
<th>2013 1000t</th>
<th>2013 t/1000 fő</th>
<th>Változás</th>
<th>Változás (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztria</td>
<td>60 583</td>
<td>59 289</td>
<td>7,01</td>
<td>-1 294</td>
<td>-2,14%</td>
</tr>
<tr>
<td>Belgium</td>
<td>87 632</td>
<td>87 372</td>
<td>7,52</td>
<td>-260</td>
<td>-0,30%</td>
</tr>
<tr>
<td>Bulgária</td>
<td>46 272</td>
<td>41 570</td>
<td>5,71</td>
<td>-4 702</td>
<td>-10,16%</td>
</tr>
<tr>
<td>Ciprus</td>
<td>6 500</td>
<td>5 547</td>
<td>6,41</td>
<td>-953</td>
<td>-14,66%</td>
</tr>
<tr>
<td>Csehország</td>
<td>99 380</td>
<td>96 497</td>
<td>9,18</td>
<td>-2 883</td>
<td>-2,90%</td>
</tr>
<tr>
<td>Dánia</td>
<td>37 653</td>
<td>40 222</td>
<td>7,18</td>
<td>2 569</td>
<td>6,82%</td>
</tr>
<tr>
<td>Észtország</td>
<td>17 521</td>
<td>18 291</td>
<td>13,85</td>
<td>770</td>
<td>4,39%</td>
</tr>
<tr>
<td>Finnország</td>
<td>44 376</td>
<td>43 129</td>
<td>7,95</td>
<td>-1 247</td>
<td>-2,81%</td>
</tr>
<tr>
<td>Franciaország</td>
<td>343 544</td>
<td>345 741</td>
<td>5,27</td>
<td>2 197</td>
<td>0,64%</td>
</tr>
<tr>
<td>Görögország</td>
<td>85 568</td>
<td>76 614</td>
<td>6,93</td>
<td>-8 954</td>
<td>-10,46%</td>
</tr>
<tr>
<td>Hollandia</td>
<td>162 447</td>
<td>162 039</td>
<td>9,66</td>
<td>-408</td>
<td>-0,25%</td>
</tr>
<tr>
<td>Horvátország</td>
<td>16 500</td>
<td>16 226</td>
<td>3,81</td>
<td>-274</td>
<td>-1,66%</td>
</tr>
<tr>
<td>Írország</td>
<td>35 502</td>
<td>34 180</td>
<td>7,44</td>
<td>-1 322</td>
<td>-3,72%</td>
</tr>
<tr>
<td>Lengyelország</td>
<td>289 288</td>
<td>290 219</td>
<td>7,53</td>
<td>931</td>
<td>0,32%</td>
</tr>
<tr>
<td>Lettország</td>
<td>6 685</td>
<td>6 404</td>
<td>3,16</td>
<td>-281</td>
<td>-4,20%</td>
</tr>
<tr>
<td>Litvánia</td>
<td>11 480</td>
<td>10 819</td>
<td>3,64</td>
<td>-661</td>
<td>-5,76%</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>10 100</td>
<td>9 723</td>
<td>18,1</td>
<td>-377</td>
<td>-3,73%</td>
</tr>
<tr>
<td>Magyarország</td>
<td>42 640</td>
<td>39 717</td>
<td>4,01</td>
<td>-2 923</td>
<td>-6,86%</td>
</tr>
<tr>
<td>Málta</td>
<td>2 701</td>
<td>2 518</td>
<td>5,98</td>
<td>-183</td>
<td>-6,78%</td>
</tr>
<tr>
<td>Nagy-Britannia</td>
<td>466 019</td>
<td>454 924</td>
<td>7,12</td>
<td>-11 095</td>
<td>-2,38%</td>
</tr>
<tr>
<td>Németország</td>
<td>745 194</td>
<td>759 926</td>
<td>9,26</td>
<td>14 732</td>
<td>1,98%</td>
</tr>
<tr>
<td>Olaszország</td>
<td>365 509</td>
<td>341 503</td>
<td>5,72</td>
<td>-24 006</td>
<td>-6,57%</td>
</tr>
<tr>
<td>Portugália</td>
<td>45 280</td>
<td>46 919</td>
<td>4,47</td>
<td>1 639</td>
<td>3,62%</td>
</tr>
<tr>
<td>Románia</td>
<td>74 292</td>
<td>63 419</td>
<td>3,17</td>
<td>-10 873</td>
<td>-14,64%</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>256 452</td>
<td>224 052</td>
<td>4,79</td>
<td>-32 400</td>
<td>-12,63%</td>
</tr>
<tr>
<td>Svédország</td>
<td>38 118</td>
<td>36 511</td>
<td>3,82</td>
<td>-1 607</td>
<td>-4,22%</td>
</tr>
<tr>
<td>Szlovákia</td>
<td>27 211</td>
<td>25 518</td>
<td>4,72</td>
<td>-1 693</td>
<td>-6,22%</td>
</tr>
<tr>
<td>Szlovénia</td>
<td>14 746</td>
<td>12 982</td>
<td>6,31</td>
<td>-1 764</td>
<td>-11,96%</td>
</tr>
</tbody>
</table>

| EU28 | 3 448 893 | 3 351 849 | 6,6 | -97 044 | -2,81% |

Forrás: EUROSTAT, 2014b, 2015h alapján saját szerkesztés
10. számú melléklet

Rangkorrelációs mátrix (nagy országok, 2013)

<table>
<thead>
<tr>
<th>Változó</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>Y₁</th>
<th>Y₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₂</td>
<td>0.093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₃</td>
<td>0.560</td>
<td>0.632</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₄</td>
<td>0.385</td>
<td>0.363</td>
<td>0.418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y₁</td>
<td>0.192</td>
<td>0.676</td>
<td>0.808</td>
<td>0.489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y₂</td>
<td>0.599</td>
<td>-0.396</td>
<td>0.159</td>
<td>0.379</td>
<td>0.044</td>
<td></td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés

11. számú melléklet

Rangkorrelációs mátrix (kis országok, 2013)

<table>
<thead>
<tr>
<th>Változó</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>Y₁</th>
<th>Y₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₂</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₃</td>
<td>-0.212</td>
<td>0.770</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₄</td>
<td>0.224</td>
<td>-0.455</td>
<td>-0.467</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y₁</td>
<td>0.467</td>
<td>0.745</td>
<td>0.467</td>
<td>-0.358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y₂</td>
<td>0.539</td>
<td>-0.103</td>
<td>-0.479</td>
<td>0.297</td>
<td>0.176</td>
<td></td>
</tr>
</tbody>
</table>

Forrás: Saját szerkesztés
12. számú melléklet

Példák az elemzés során lefuttatott regressziós egyenletek eredményeire

X: Megújuló energiaforrások – 2013
Y: GCI – 2013
Elemzés köre: EU – „kis országok”

Model Summary and Parameter Estimates

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>.134</td>
<td>1,237</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>.126</td>
<td>1,151</td>
</tr>
<tr>
<td>Quadratic</td>
<td>.141</td>
<td>.575</td>
</tr>
<tr>
<td>Cubic</td>
<td>.447</td>
<td>1,615</td>
</tr>
<tr>
<td>Exponential</td>
<td>.134</td>
<td>1,237</td>
</tr>
<tr>
<td>Logistic</td>
<td>.134</td>
<td>1,237</td>
</tr>
</tbody>
</table>

The independent variable is renew13.

X: Biomassza részaránya – 2013
Y: Ökológiai lábnyom
Elemzés köre: EU – „kis országok”

Model Summary and Parameter Estimates

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>.075</td>
<td>.645</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>.054</td>
<td>.460</td>
</tr>
<tr>
<td>Quadratic</td>
<td>.343</td>
<td>1,824</td>
</tr>
<tr>
<td>Cubic</td>
<td>.390</td>
<td>2,238</td>
</tr>
<tr>
<td>Exponential</td>
<td>.162</td>
<td>1,551</td>
</tr>
<tr>
<td>Logistic</td>
<td>.162</td>
<td>1,551</td>
</tr>
</tbody>
</table>

The independent variable is renew13.
X: Munkanélküliségi ráta (2010-2013 közötti változás alapján)
Y: Ökológiai lábnyom
Elemzés köre: EU – „nagy országok”

Model Summary and Parameter Estimates

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>0.033</td>
<td>0.342</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>0.037</td>
<td>0.385</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.115</td>
<td>0.584</td>
</tr>
<tr>
<td>Cubic</td>
<td>0.115</td>
<td>0.584</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.039</td>
<td>0.402</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.039</td>
<td>0.402</td>
</tr>
</tbody>
</table>

The independent variable is un_vd.

X: K+F aránya a GDP százalékában
Y: Ökológiai lábnyom
Elemzés köre: „kis” országok

Model Summary and Parameter Estimates

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>0.354</td>
<td>4.388</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>0.333</td>
<td>3.995</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.354</td>
<td>1.920</td>
</tr>
<tr>
<td>Cubic</td>
<td>0.440</td>
<td>1.574</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.294</td>
<td>3.329</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.294</td>
<td>3.329</td>
</tr>
</tbody>
</table>

The independent variable is rd013.
Model Summary and Parameter Estimates

Dependent Variable: gci15

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>.630</td>
<td>13,636</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>.627</td>
<td>13,452</td>
</tr>
<tr>
<td>Quadratic</td>
<td>.656</td>
<td>6,673</td>
</tr>
<tr>
<td>Cubic</td>
<td>.656</td>
<td>6,673</td>
</tr>
<tr>
<td>Exponential</td>
<td>.618</td>
<td>12,962</td>
</tr>
<tr>
<td>Logistic</td>
<td>.618</td>
<td>12,962</td>
</tr>
</tbody>
</table>

The independent variable is uhg_vd.

Dependent Variable: gci13

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>.621</td>
<td>16,386</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>.672</td>
<td>20,526</td>
</tr>
<tr>
<td>Quadratic</td>
<td>.717</td>
<td>11,423</td>
</tr>
<tr>
<td>Cubic</td>
<td>.717</td>
<td>11,423</td>
</tr>
<tr>
<td>Exponential</td>
<td>.615</td>
<td>15,994</td>
</tr>
<tr>
<td>Logistic</td>
<td>.615</td>
<td>15,994</td>
</tr>
</tbody>
</table>

The independent variable is bio_resz13.
Model Summary and Parameter Estimates

Dependent Variable: gci13

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>,535</td>
<td>11,502</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>,583</td>
<td>13,997</td>
</tr>
<tr>
<td>Quadratic</td>
<td>,629</td>
<td>7,630</td>
</tr>
<tr>
<td>Cubic</td>
<td>,762</td>
<td>8,542</td>
</tr>
<tr>
<td>Exponential</td>
<td>,538</td>
<td>11,623</td>
</tr>
<tr>
<td>Logistic</td>
<td>,538</td>
<td>11,623</td>
</tr>
</tbody>
</table>

The independent variable is un13.

Model Summary and Parameter Estimates

Dependent Variable: footprint

<table>
<thead>
<tr>
<th>Equation</th>
<th>Model Summary</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
</tr>
<tr>
<td>Linear</td>
<td>,491</td>
<td>9,638</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>,486</td>
<td>9,438</td>
</tr>
<tr>
<td>Quadratic</td>
<td>,506</td>
<td>4,605</td>
</tr>
<tr>
<td>Cubic</td>
<td>,507</td>
<td>4,631</td>
</tr>
<tr>
<td>Exponential</td>
<td>,366</td>
<td>5,775</td>
</tr>
<tr>
<td>Logistic</td>
<td>,366</td>
<td>5,775</td>
</tr>
</tbody>
</table>

The independent variable is ren_vd.
13. számú melléklet

Az EU tagországainak jelenlegi helyzete a zöld, versenyképes ország felé vezető úton

Forrás: Saját szerkesztés