MONOAROMÁS SZÉNHIDROGÉNEK MIKROBIÁLIS LEBONTÁSA
OXIGÉNLEIMITÁLT KÖZEGÉKBEN

FARKAS MILÁN

GŐDÖLLŐ
2017
A doktori iskola

Megnevezése: Környezettudományi Doktori Iskola

Tudományága: Környezettudomány

Vezetője: Csákiné Dr. Michéli Erika
Tanszékvezető, egyetemi tanár
Szent István Egyetem
Mezőgazdasági és Környezettudományi Kar
Környezettudományi Intézet
Talajtani és Agrokémiai Tanszék

Témavezetők: Dr. Táncsics András
Tudományos főmunkatárs
Szent István Egyetem
Regionális Egyetemi Tudásközpont

Dr. Szoboszlay Sándor
Egyetemi docens
Szent István Egyetem
Mezőgazdasági és Környezettudományi Kar
Akvakultúra és Környezetbiztonsági Intézet
Környezetbiztonsági és Környezettoxikológiai Tanszék

Az iskolavezető jóváhagyása A témavezetők jóváhagyása
Tartalomjegyzék

Rövidítések jegyzéke .. 5
1. Bevezetés ... 7
2. Irodalmi áttekintés .. 9
2.1 A felszín alatti víz jelentősége .. 9
2.2 Szénhidrogén szennyezések ... 10
2.3 A kőolajalkotó szénhidrogének jellemzése ... 12
2.3.1 Összes alifás szénhidrogének – TPH (Total Petroleum Hydrocarbon) 12
2.3.2 Aromás szénhidrogének ... 13
2.4 Kármentesítési technológiák ... 14
2.5 A mikroorganizmusok szerepe a szénhidrogénbontásban .. 15
2.6 Környezeti tényezők hatása a szénhidrogén biodegradációra 16
2.6.1 A hőmérséklet hatása a szénhidrogének biológiai lebontására 16
2.6.2 Tápanyagellátás ... 17
2.6.3 A pH hatása a kőolajszármazékok biodegradációjára .. 17
2.6.4 Az oxigén és alternatív elektron akceptorok szerepe a szénhidrogének biodegradációjában ... 17
2.7 Az aromás szénhidrogének aerob lebontásában kulcsszerepet játszó enzimek .. 20
2.7.1 A katekol 2,3-dioxigenáz gének diverzitása .. 21
2.8 A BTEX-vegyületek anaerob lebontása ... 22
2.8.1 A benzol anaerob biodegradációja ... 23
2.8.2 A toluol anaerob biodegradációja .. 24
2.8.3 Az etil-benzol anaerob biodegradációja ... 25
2.8.4 A xilolok anaerob biodegradációja .. 26
3. Anyag és módszertan ... 27
3.1 Mintavételezés .. 27
3.2 DNS és RNS izolálás .. 28
3.3 Agaróz gélelektroforézis .. 28
3.4 Az RNS átírása komplementer DNS-sé .. 29
3.5 PCR (Polimeráz láncreakció) ... 29
3.6 Terminális restrikciós fragmethossz polimorfízmust vizsgáló (T-RFLP) 29
3.6.1 DNS szakaszok felszaporítása PCR segítségével a közösségi T-RFLP.............. analízishez ... 29
3.6.2 A közösségi PCR termék emésztese restrikciós endonukleázzal T-RFLP hez .. 31
3.6.3 Az emészett PCR termék tisztítása és analízise ... 31
3.7 DNS klónkönyvtárak létrehozása és feldolgozása ... 32
3.7.1 A klónkönyvtárak létrehozása .. 32
3.7.2 Az inzert visszanyerése a klónokból PCR segítségével .. 34
3.8 Sanger-féle dideoxi szekvenálás ... 34
3.9 Bázissorrend és filogenetikai elemzés ... 35
3.10 Csoportreprezentatív klónok terminális fragment (T-RF) hosszának moeghatározása ... 35
3.11 Katekol 2,3-dioxigenáz és benzil szukcinát szintáz gének kimutatása a közösségi mintákból ... 35
3.12 Differenciált dideoxi primerhosszabítás - Single Nucleotid Primer Extension .. 37
3.13 Stabil izotópos jelölés (SIP) ... 38
3.14 Újgenerációs DNS-szekvenálási módszerek .. 40
3.14.1 Piroszekvenálás .. 40
Köszönetnyilvánítás

A SIP kísérlet során használt tápoldat az alábbi összetévekből áll:

Mellékletek

Summary

Következtetések

4.3.4
4.3.3
4.3.2
4.3.1
4.2.5
4.2.4
4.2.3
4.2.1
4.1.7
4.1.6
4.1.5
4.1.4
4.1.3
4.1.2
4.1.1

Eredmények

3.15.5
3.15.3
3.15.2
3.15.1
3.14.2

3.1.14.2 Félvezető alapú szekvenálás .. 41
3.15 Új baktériumfaj leírásához szükséges vizsgálatok 42
3.15.1 DNS-DNS hibridizáció .. 43
3.15.2 A guanin és citozin százalékos arányának meghatározása 44
3.15.3 Fenotípusos és kemotaxonómiai vizsgálatok 44
3.15.4 Sejtmembrán zsírsav analízis .. 45
3.15.5 Respirátórikus és lipokinonok analízise.. 45
3.15.6 Poláris lipidek meghatározása .. 45
3.15.7 Szénhidrogénbontó képesség meghatározása 45
4. Eredmények ... 47
4.1 A siklósi BTEX-vegyületekkel szennyezett, hipoxikus talajvíz
mikrobaközösségének hosszútávú monitoringja 47
4.1.1 A mintavételi terület jellemzése .. 47
4.1.2 Az ST2-es kút mikroba közösségének feltárása 16S rDNS klónkönyvtárak
segítségével .. 50
4.1.3 A klónkönyvtárak statisztikai elemzése, összehasonlítása 55
4.1.4 A mikroba közösség dinamikájának vizsgálata T-RFLP segítségével 55
4.1.5 A szennyezés lebontásában szerepet játszó katekol 2,3-dioxigenáz
funkciónének kimutatása .. 57
4.1.6 Összefüggések vizsgálata a mikrobaközösség összetétele és az I.2.C
alscaládába tartozó C23O génexpressziója között 63
4.1.7 Diszkusszió .. 64
4.2 A siklósi mikrobaközösség stabil izotópos toluol lebontó vizsgálatára
hipoxikus körülmények között ... 68
4.2.1 A stabil izotópos dúsítás körülményei .. 68
4.2.2 A toluol fogyása a mikrokozmoszokban, valamint az egyes DNS frakciók
elkülönítése ... 69
4.2.3 A mikrobaközösség diverzitása ... 70
4.2.4 Az I.2.C típusú C23O dioxigenázok kimutatása a SIP frakciókból 72
4.2.5 Diszkusszió .. 75
4.3 Vasredukáló mikroorganizmusok dúsítása a siklósi, BTEX-vegyületekkel
szennyezett kárhelyről ... 77
4.3.1 A mikrokozmosz kísérlet körülményei .. 78
4.3.2 A kiindulási minta bakteriális diverzitása .. 80
4.3.3 A dúsítást követő mikrobiális diverzitása .. 81
4.3.4 A I.2.C típusú C23O és bssA génék detektálása és diverzitása 84
4.3.5 Diszkusszió .. 86
4.4 Az új baktériumfaj -Zoogloea oleivors sp nov.- leírásának bemutatása..... 87
5. Következtetések ... 91
6. Összefoglalás ... 93
7. Summary ... 95
8. Mellékletek .. 97
8.1 Irodalomjegyzék .. 97
8.2 Az éves monitoring során tervezett SNuPe primerek 97
8.3 A kísérletek során használt speciális táptalajok 117
8.3.1 A stabil izotópos dúsításnál használt tápoldat összetétele 117
A SIP kísérlet során használt tápoldat az alábbi összetevőkből áll: 117
8.3.2 A vasredukáló mikroorganizmusok dúsítására használt tápoldatok
összetétele .. 118
9. Köszönőnyilvánítás ... 119
Rövidítések jegyzéke

BamB-I: ATP independent benzoyl-CoA reductase subunits (ATP független benzoil-CoA reduktáz alegységek)
BcrA-D: ATP-dependent benzoyl-CoA reductase subunits (ATP függő benzoil-CoA reduktáz alegységek)
Bss: benzylsuccinate synthase (benzil szukcinát szintáz)
BTEX: benzol, toluol, etil-benzol és xilolok
C23O: catechol 2,3-dioxigenase (katekol 2,3-dioxigenáz)
CCA: canonical-correlation analysis (kanonikus korreláció elemzés)
dNTP: deoxynucleotide triphosphates (dezoxinukleotid trifoszfátok)
OTU: operational taxonomic unit (operatív rendszertani egység)
PAH: polycyclic aromatic hydrocarbon (policiklikus aromás szénhidrogének)
PCA: principal component analysis (főkomponens elemzés)
PCR: polymerase chain reaction (polimeráz láncreakció)
SIP: stable isotope probing (stabil izotópos jelölés)
SNuPE: single nucleotid primer extension (differenciált dideoxi primerhosszabítás)
sp.: species (faj)
spp.: species (fajok)
T-RF: terminal restriction fragment (restrikciós enzimmel hasított darabok terminális része)
T-RFLP: terminal-restriction fragment length polymorphism (terminális restrikciós fragmethossz polimorfizmus)
1. Bevezetés

Napjainkra elértük az olajkitermelés csúcsát, valószínű, hogy a szárazföldön már nem fognak újabb óriásmézőket feltárnii. Azonban a kitermelés, feldolgozás radikális csökkenése még évtizedeket váratthat magára, és amíg kőolaj van, addig az általa okozott szennyezésekkel is számolnunk kell. A legtöbb környezeti szennyezést, akárcsak a világon, hazánkban is az kőolajszármazékok okozzák (Barótfi 2000). A kőolaj és származékai számos olyan komponenst tartalmaznak, amelyek károsak az emberi egészségére, karcinogén, teratogén és mutagén hatásúak lehetnek. Szennyezés esetén a szénhidrogének közvetlenül vagy a földtani közegen keresztül elérhetik a felszín alatti vizet, majd azzal együtt mozogva nagy távolságokra is eljuthatnak, elszennyezve az addig tiszta területeket, ivóvízkészleteket. Hazánkban a szénhidrogén szennyezéseket főleg tárolás és szállítás során bekövetkező hibák okozzák, csak az Országos Környezeti Kármentesítési Program Volt Szovjet Ingatlan alprogramja során 2,7-3,0 millió m³ talaj és 1,0-1,2 millió m³ felszín alatti vízkészlet elszennyeződését mutatták ki (OKKP 2005). Amennyiben a kárhely és a szennyezés tulajdonságai lehetővé teszik, a bioremediációs technológiák alkalmazása környezetkímélő és költséghatékony megoldás lehet a szénhidrogén szennyezések felszámolására.

Annak ellenére, hogy a BTEX-vegyületek aerob és anaerob körülmények közti biodegradációja széleskörűen kutatott, a hipoxikus közegekben lejátszódó lebontási folyamatokról igen kevés információ áll a rendelkezésünkre. Mivel a mélyen fekvő talaj illetve talajvíztáblák oldott oxigén koncentrációja legtöbb esetben alacsony, szükségszerű azon mikroba közösségek vizsgálata, melyek anyagcsere-útvonalai a hipoxikus körülményekhez adaptálódtak. Ennek megfelelően célul tűztük ki:

- egy BTEX-vegyületekkel szennyezett hipoxikus kárhely mikroaerób mikrobaközösségének valamint az általuk hordozott aromás szénhidrogének bontásában résztvevő egyes funkciónének hosszútávú monitorozását.
- stabil izotópos módszert alkalmazva a kárhely mikroaerób toluol biodegradációjában részt vevő baktériumok, valamint funkciójének azonosítását,
- továbbá a lebontó mikroszervezetek feldúsítását és izolálását ökológiai szerepük pontosabb megértése érdekében.
2. Irodalmi áttekintés

2.1 A felszín alatti víz jelentősége

A felszín alatti vizek fontossága az emberiség számára megkérdőjelzhetetlen, leszámitva a sarki jégsapkákat és gleccsereket, ezek adják az édesvíz készletek 97%-át. E vízkészletek emberek milliárdjai számára szolgáltatnak ivóvizet; az Európai Unió polgárainak közel 75%-a fedezi talaj- és rétegvízből mindennapi szükségleteit. A vízügyi nyilvántartás szerint hazánk 1771 ivóvízbázisából 1663 felszín alatti, melyeknek közel fele a szennyeződéssel szembeni veszélyeztetettség szempontjából sérülékenyenek tekinthető (M-VGT 2009). A felszín alatti vizek ipari (hűtővízként és oldószerként), valamint mezőgazdasági (öntözővízként és állattartásban felhasználása is jelentős. Az elmúlt 40 évben a talaj- és rétegvizek ökológiai és társadalom-gazdasági megítélése sokat változott, napjainkban egyre nyilvánvalóbbá válik, hogy e rétegekre, nemcsak mint édesvízfőrreásra kell tekintenünk, hanem természeti értékként is védenünk kell azokat. Fontos szerepet töltenek be a hidrológiai ciklusban, mocsaras-, lápos területek és folyók puffereként szolgálva a száraz periódusokban. Világszerte számos folyó éves vízhozamának több mint fele származik felszín alatti vizekből.

2.1. ábra Az egyes országok vízlábnyom értékei (Mekonnen és Hoekstra 2011)

2.2 Szénhidrogén szennyezések

Hazánk felszín alatti vízkészleteinek védelmét a 219/2004. (VII. 21.) Kormányrendelet szabályozza. „A rendelet célja a felszín alatti vizek:

- a) jó állapotának biztosításával és annak fenntartásával,
- b) szennyezésének fokozatos csökkentésével és megelőzésével,
- c) hasznosítható készleteinek hosszú távú védelmére alapozott fenntartható vízhasználattal,
- d) a földtani közig kármentesítésével összefüggő feladatok, jogok és kötelezettségek megállapítása."

A szénhidrogén szennyezések négyféle állapotban fordulhatnak elő a felszín alatti közigben:

- szabad fázisban a talajban
- felszín alatti vízben oldva (illetve az oldhatósági határt meghaladva felülűszó fázist képezve)
- talajszemcsék felszínéhez kötötten
- gázfázisként a talaj szabad pörusaiban

A talajfelszínre kiömlött olaj széterül, majd a nehézségi erő hatására egyre mélyebbre hatol a földtani közigben. Végül, amennyiben a beszivárgó szénhidrogén mennyisége nagyobb, mint a közig olajvisszatartó képessége, a felszín alatti vízbe kerülhet, elszennyezve azt. A talajvíz vertikális és horizontális mozgásával a szénhidrogének továbbterjedhetnek, illetve kipárolgással átkerülhetnek más, addig nem érintett közegekbe. A hazai jogi szabályozásnak megfelelően, a szennyezés bekövetkezése után elsődleges a szennyezéssel kapcsolatos információk összegyűjtése és környezetvédelmi célú értékelése. A tervezési és kivitelezési szakaszban a helyi
adottságoknak megfelelően kell eljární, hogy a szennyezés felszámolása minél hatékonyabban menjen vége. A szennyezés veszélyességének meghatározása és az alkalmazandó kármentesítési technológia kiválasztása szempontjából tehát fontos az alábbi tényezők ismerete:

- a szennyezőanyag kémiai és fizikai tulajdonságai
- az érintett terület hidrogeológiai adottságai
- a környezeti, egészségügyi kockázat nagysága
- a hatályos környezetvédelmi követelményrendszer
- a rendelkezésre álló anyagok, források
- hatósági és lakossági akceptálhatóság, szakvélemény
- területi jelleg, távlati funkciónak (Anton et al. 2006, Barótfi 2000)

2.3 A kőolajalkotó szénhidrogének jellemzése

A kőolaj összetétele rendkívül heterogén, paraffinok (egyszeres kötést tartalmazó, nyílt szénláncú vegyületek), olefinek (egy vagy több kettős kötést tartalmazó szénhidrogének), naftének (kettős kötés nélküli, telitett gyűrűs vegyületek, cikloalkánok) és aromás szénhidrogének alkotják, melyeknek aránya nagymértékben változhat a származási helytől és a feldolgozás technológiájától függően. A több száz, esetenként ezer vegyület főbb alkotóelemeit a szén (81-87%), hidrogén (10-14%), oxigén (0-7%), kén (0-7%) és a nitrogén (0-2%) adja.

2.3.1 Összes alifás szénhidrogének – TPH (Total Petroleum Hydrocarbon)

A külföldi gyakorlatban a C₅-C₄₀-ig minden kőolaj eredetű szénhidrogént, míg a hazai jogszabályokban csak az alifás, 5-40 szénatomot tartalmazó vegyületeket sorolják e csoportba. A fent említett vegyületeket mind a kőolajban, mind annak származékaiban megtalálhatjuk. Kémiaiállag telítettekre (a szénatomok között csak egyszeres kötés található) és telítetlenkre
(kettes, háromas kötéseket is tartalmaznak) oszthatjuk öket, ezen belül lehetnek egyenes, elágazó és gyűrűs lánccúak.

A TPH csoporton belül elkülönítünk VALPH (Volatile Aliphatic Petroleum Hydrocarbon) - illékony alifás/aliciklusos szénhidrogén vegyületeket, melyek 5-10 szénatomot tartalmaznak és nagy mennyiségben megtalálhatóak gazolinban, benzinben, valamint a kerozinban.

A másik csoportot az EPH (Extractable Petroleum Hydrocarbon) - extrahálható szénhidrogének, kevésbé vagy nem illékony vegyületek alkotják, amelyek pl.: a gázolaj, fűtőolajok, kenőolajok fő alkotórészei (Szoboszlay és Kriszt 2008).

2.3.2 Aromás szénhidrogének
Telítetlen gyűrűs, konjugált kettős kötést tartalmazó vegyületek. Egyes benzolszármazékot régebben illatos növényi gyantákból, balzsamokból nyerték ki, innen kapta a csoport az elnevezését (Furka 1991).

2.3.2.1 BTEX-vegyületek - Benzol és alkilbenzolok
Illékony, monoaromás vegyületek, melyek közül a legjelentősebbek a csoport névadói: benzol, toluol, etil-benzol és xilol (2.2. ábra). Természetben megtalálhatóak a nyersolajban 4 g/l-es koncentrációban, kis mennyiségben (0,8 ppb) kimutathatóak a gáz- és olajmezők közelében.

2.2. ábra A BTEX-vegyületek szerkezeti képlete
Mind a négy összetevő az idegrendszer károsodását okozhatja, továbbá a benzol káros hatással lehet a csontvelő vérképző sejtjeire és akut myeloid típusú leukémiát okozhat (ATSDR 2004). Egy Kínában készített átfogó tanulmány alapján a 100 000 főre vetített leukémiás halálzások száma a benzollall érintkező munkavállalók esetében 14, míg a benzolt nem alkalmazó üzemek dolgozói között 2 fő volt. Azon munkavégzők között, akik korábban átestek benzolmérgezésen, a tapasztalt leukémiás halálzati ráta 701/100 000 fő (Yin et al. 1987). A B szennyezettségi határértéket (a jogszabály által meghatározott kockázatos anyag koncentráció) benzol esetében felszín alatti vizekre 1 µg/l, míg a toluol, etil-benzol és xilolok esetében 20 µg/l koncentrációban határozza meg a 6/2009. (IV. 14.) KvVM-EüM-FVM együtt rendelet.

2.3.2.2 PAH-vegyületek - Policiklikus aromás szénhidrogének

2.4 Kármentesítési technológiák
A mikroorganizmusok szerepe a szénhidrogénbontásban

A felszín alatti közgekek általában tápanyagszegénynyek tekinthetők, mivel a felszínről korlátozott mennyiségű szerves vegyület jut el a mélyebben fekvő rétegekbe. Így nem meglepő, hogy a mikroorganizmusok száma és aktivitása nagyságrendekkel alacsonyabb, mint a felszíni vizekben, vagy talajrétegekben (Goldscheider et al. 2006, Griebler és Lueders 2009). A szerves szennyezőanyagok bemosódásukkal tápanyagot visznek a közegbe és az általuk okozott szelekciós nyomásra a mikrobaközösség összetétele megváltozik, a szennyezők degradációjára képes organizmusok válnak dominánsá. A szénhidrogén bontási képesség széles körben elterjedt a mikroszervezetek között, több különböző baktérium- és gombacsoport is rendelkezik ezzel a tulajdonsággal. Azonban meg kell jegyeznünk, hogy egyik mikroszervezet sem képes a szennyezőanyagok teljes spektrumának bontására, ezért a komplex szennyezések, mint például nyersolajszennyezés, teljes degradációja csak töbtagú, különféle enzimrendszerként rendelkező mikrobaközösség lehet képes. A szennyezőanyagok lebontásaiban szerepet játszó enzimek gyakran plazmidokon kódoltak, így a mikrobaközösség gyors adaptációjában szerepet játszhat azok horizontális géntranszfer útján történő terjedése. A Pseudomonas nemzetség tagjai körében számos ilyen plazmid ismert, és nagymértékben kutatott. Az egyik, működésében legjobban feltárt plazmid, az ún. TOL plazmid, amely szinte kizárólag Pseudomonasokban található meg, és a toluol lebontás enzimeit kódolja (Burlage et al. 1989). E plazmid 115 kilobázis nagyságú és mivel transzpozon eredetű szekvenciákat is tartalmaz, könnyen átadódik, nagy mobilitással rendelkezik. A horizontális géntranszfer in situ megfigyelése azonban sok nehézségbbe ütközik és emiatt ritkán dokumentált folyamat (Thomas és Nielsen 2005). Továbbá a Pseudomonasok más fajokkal egyetemben felületaktív anyagokat is termelnek, melyek növelik a hidrofób szénhidrogén szennyezők vízoldhatóságát. Többek között egyes P. fluorescens és Bacillus sp. törzsek lipopeptideket, a P. aeruginosa rhamnolipideket míg a Rhodococcus fajok glikolipideket és poliszacharidokat
termelhetnek (Banat 1995). Vasredukáló baktériumok körében kimutatták, hogy egyes fajok vas(III)-kelátorokat bocsájtanak a közegbe, ezáltal a számukra hasznosíthatatlan oldatlan vasofoxidok elérhetővé válnak, így közvetve stimulálva a szennyezőanyagok anaerob lebontását (Lovley 2003).

A felszín alatti közgege bioremediációja során a legtöbb kutatás a baktérium közösségek összetételére, és azon belül az egyes fajok funkcióira összpontosít, az elmúlt évtizedben kezdték csak feltárni a protozoák és a bakteriofágok szerepet ezen ökoszisztémákban. Noha számos protozoa baktériumokkal táplálkozik, az általuk kibocsájtott vegyületek képesek lehetnek a bakteriális metabolizmust stimulálni, továbbá a szénhidrogén biológiai hozzáférhetőségét növelni. A pozitív példák mellett, azonban számos esetben semleges vagy negatív hatást is megfigyeltek a kutatók (Griebler et al. 2014, Biagini et al. 1998, Strauss és Dodds 1997).

Mattison és munkatársai által beállított kísérletben (2005) a Heteromita globosa nevű protozoa ugyan lecsökkentette a kísérletben alkalmazott Pseudomonas törzs csíraszámát, azonban ez a kisebb populáció is ugyanannyi idő alatt képes volt a benzol biodegradációjára, mint az, amely nem állt protozoa “szabályzás” alatt. Cunningham és munkatársai (2009) eredményei alapján a triklór-etilén biodegradációját a protozoák jelenléte meggátolta, de ha a szennyezőanyag koncentrációja elérte a protozoákra nézve toxikus értéket, vagy azokat szűréssel eltávolították a rendszerből a biodegradáció végbement. A bakteriofágok szennyezett ökoszisztémákban betöltött szerepének vizsgálatára csak néhány kutatás irányult, a „killing the winner” hipotézis szerint bizonyos esetekben a fágok lehetnek felelősek a mikrobaközösségben bekövetkezett dominanciaviszonyok megváltozásáért (Griebler et al. 2014).

2.6 Környezeti tényezők hatása a szénhidrogén biodegradációra

2.6.1 A hőmérséklet hatása a szénhidrogén biológiai lebontására

Kármentesítés során azonban a közeg hőmérsékletének megváltoztatására csak ex situ alkalmazások során nyílik lehetőség, könnyen belátható, hogy egy 10-16°C hőmérsékletű talajvíztábla felmelegítése szinte lehetetlen vállalkozás.

2.6.2 Tápanyagellátás
Az enzimek megfelelő működéséhez, a szénforráson kívül makro- mikro- és nyomelemekre is szükség van. Fontos limitáló tényező lehet a nitrogén, foszfór, kálium jelenlété. Ezen makroelemek arányának helyes megválasztásával (pl.: C:N=10:1, C:P=100:1), illetve a szennyezett közegbe történő keverésével a degradáció jelentősen meggyorsítható. A tápanyagok felvételéhez, azok lebontásához, transzformációjához a víz biztosítja a reakcióközeget. A kísérletek szerint a talajban zajló lebontó folyamatok számára 50-70%-os víztartalom a legmegfelelőbb (Dibble és Bartha 1979).

2.6.3 A pH hatása a kőolajszármazékok biodegradációjára

2.6.4 Az oxigén és alternatív elektron akceptorok szerepe a szénhidrogének biodegradációjában
A többi szénhidrogén származékkal szemben a BTEX-vegyületek vízoldékonysága magasnak tekinthető, így a talajvíz táblában a szennyezési csóva gyorsan kialakul (Chakraborty és Coates 2004). E szennyezők biodegradációja során az elektron akceptor elsődlegesen az oxigén, mivel a lebontásuk legfőbb lépése, az aromás gyűrű hasítása legtöbbször oxigenáz enzimekkel valósul meg (Harayama et al. 1992). Noha a szénhidrogének lebontása megvalósulhat anaerob körülmények között is, az aerob degradáció sebessége jóval meghaladja azt (Anton et al. 2006). A nagy mennyiségben jelen lévő szennyezőanyag azonban gátolhatja az oxigén beoldódását a vizekbe, ezzel párhuzamosan a szennyeződés lebontása miatt a mikroszervezetek oxigénigénye
jelentősen megnövekszik. Az oxigénszegény, mikroaerofil környezetben a fakultatív anaerob mikroszervezetek kerülnek előtérbe, hiszen megfelelő mennyiségű O\textsubscript{2} jelenléteben aerob lebontási utakat használnak, de az oxigénszint lecsökkenése esetén átváltanak az alternatív elektron akceptorokra. A biodegradációs folyamatok gyorsítása érdekében, hiánya esetén az oxigén mennyiségét a kármentesítési eljárások során olyan fizikai beavatkozásokkal növelik, mint a talajlazítás, átforgatás, áramoltatás vagy a nyeletés. Mindazonáltal e módszerek igen sok energiát igényelnek, legfőképpen a felszín alatti szennyezések esetében, ahol gyakorta anaerob körülmények és az azok által meghatározott mikrobaközösségek dominálnak. Az oxigén jelentős hányma ilyen esetekben az anaerob üledékbén található redukált állapotú szulfid, vas és egyéb ionokkal fog először reakcióba lépni. Klórozott szénhidrogének, vagy friss gázolajszennyezés esetén az in situ bioventillációs eljárás nem alkalmazható, mivel az az illékony, sok esetben toxiszk komponenseket kihajtja a szennyezett közegből a levegőbe (Philp és Atlas 2005, KVVM 2010). Egyes kármentesítési eljárások során a közegbe hidrogénperoxidot kevernek az oxigénszint növelése érdekében, azonban e vegyület könnyen reagálhat az ott található szerves anyagokkal, szennyezőkkel. Szélsőséges esetekben akár a szénhidrogén bontására képes mikroszervezetek populációméretét is lecsökkentheti, így is veszélyeztettev a biodegradáció sikereségét (Maier 2000).

Vastag agyag vízzáró rétegek, vagy szénforrásban gazdag talajok hatására természetesen is előfordulhatnak anaerob talajvízrétegek, azonban legtöbbször mégis valamilyen szennyeződés hatására alakulnak ki oxigénhiányos közegek. Az erősen szennyezett talajvizek esetében (akár 100 mg/l szénhidrogén koncentráció), az elektron donor szénhidrogének mennyisége jóval meghaladhatja a rendelkezésre álló elektron akceptorok szintjét, ilyen esetekben a szennyezés természetes úton történő biodegradációnjára sajnos csekély az esély. Egyes modellek szerint az ilyen nagymértékű szerves szennyezésekről szóló hatására a vízadókban redox zónák alakulnak ki (2.3. ábra). A redox zonáció elmélet lényege az, hogy az alternatív elektron akceptorok hasznosítása redoxpotenciáljuk alapján történik, így a szennyezési csóva középpontjában leggyakrabban metanogén kondíciók, majd a csóva pereme felé haladva szulfát-, majd vas- és mangánredukáló, végül denitrifikáló zónákat figyelhetünk meg. Azaz a nitrát-, vas- és mangánredukáló közege általában közepesen, míg a szulfátredukció és metanogenezis erősen redukáló körülmények között alakul ki. Az uralkodó redox kondíciók meghatározása szennyezett felszín alatti közege esetében nehézkes. Amennyiben a nitrát koncentráció meghaladja a 0,5 mg/l-es értéket, nitrátredukció valószínűsíthető. Alacsony nitrát valamint magas redukált vas (Fe(II)) és mangán (Mn(II)) koncentrációk esetében mangán- és vas-redukáló körülményekről beszélhetünk. Továbbá ha a hidrogén-szulfid koncentráció meghaladja a 0,05 mg/l-t szulfátredukáló, 0,2 mg/l szén-dioxid koncentráció felett pedig metanogén körülmények valószínűsíthetőek. Egyes
Az újabb csóva perem (plume-fringe) elmélet alapján az oldott elektron akceptorok a szennyezési csóva középpontjában nagy koncentrációjú szennyezés hatására gyorsan kimerülnek, és a talajvíz áramlás irányában lévő területeken nem, vagy csak nagyon lassan tudnak visszatöltődni, hiszen a keresztirányú diszperzió mértéke igen alacsony (2.3. ábra). Ennek megfelelően a szennyezés középpontjában és az az alatt elhelyezkedő területeken metanogén degradáció, oldatlan vas(III)-, valamint mangán(IV)-redukció képzélhető el. Az elektron akceptorok ilyen jellegű kimerülését a közelmúltban történt vizsgálatok igazolják (Anneser et al. 2008, 2010). Amennyiben a szennyezőanyag koncentrációja csekély és nem meríti ki a rendelkezésre álló elektron akceptorokat, az áramlás irányában kialakulhat bizonyos mértékű zonáció, ahol először nitrát- és szulfátredukció, majd metanogenezis jelenhet meg (Tischer et al. 2013, Fahrenfeld et al. 2014).

Azonban a nagymértékben szennyezett talajvizek esetében az elektron donorok mennyisége jóval meghaladja az elektron akceptorok oxidációs kapacitását. Ezen esetekben valószínűbb, hogy az egyes elektron akceptorok elérhetősége, és nem azok termodinamikai előnyössége mozgatja a lebontási folyamatokat. A csóva perem elmélet alapján az oxigénnel, nitráttal és szulfátáll történő biodegradáció elsősorban a szennyezési csóva peremén valósul meg, ahol a
környező tiszta talajvízből ezen anyagok diffúzióval és diszperzióval bekerülhetnek. Azon a területen pedig, ahol az oldott elektron akceptorok kimerültek a biogeradációs folyamatokat a vas- és mangán redukció, valamint a metanogenezis mozgatja (Meckenstock et al. 2015)

2.7 Az aromás szénhidrogének aerob lebontásában kulcsszerepet játszó enzimek

![2.4. ábra A katekol 1,2-dioxigenáz enzim „orto” típusú gyűrűhasítása (saját ábra)](image)

Az extradiol dioxigenázok ugyanakkor nem-hem Fe(II) iont (esetleg más kétértékű fémiont) tartalmaznak kofaktorként, és a katekol aromás gyűrűjét a hidroxilszubsztituensektől meta irányban hasítják (Siegbaehn és Haefner 2004). A reakció során létrejövő termék katekol
szubsztrát esetén a 2-hidroximukonsav-félfalaldehid (2.5. ábra). Ebbe a csoportba tartoznak például a katekol 2,3-dioxigenáz enzimek.

2.5. ábra A katekol 2,3-dioxigenáz enzim „meta” típusú gyűrűhasítása (saját ábra)

Az intradiol és extradiol dioxigenáz enzimek strukturális szempontból, illetve az aminosav szekvenciájukat tekintve nagyban különböziknek egymástól, és evolúciós szempontból is két külön csoportba tartoznak. Míg az intradiol dioxigenázok monofilettikus csoportot alkotnak, addig az extradiol dioxigenázok polifiletikus eredetűek, és több alcsort tartozon belül elkövetően (Eltis és Bolin 1996, Vaillancourt et al. 2006).

2.7.1 A katekol 2,3-dioxigenáz gének diverzitása

történő lebontásában nagy szerep juthat azon baktériumoknak, amelyek ezt az enzimet kódoló gént fejezik ki.

2.8 A BTEX-vegyületek anaerob lebontása

Az 1980-as évek előtt szinte csak az aerob mikrobiális BTEX lebontást tanulmányozták, és csak az utóbbi két évtizedben került a kutatások középpontjába a hipoxikus és anoxikus közegek vizsgálata. Abban az összes kutató egyetért, hogy a benzol anaerob lebontása a legbonyolultabb, míg a toluolé aránylag egyszerűen végbeemegy. Ezen tényből fakadóan a toluol biodegradációja a leginkább kutattott és feltárt terület. Nitrat, Mn(IV), Fe(III), szulfát, CO₂ és perklorát, klorát terminális elektron akceptorok esetében is megfigyelték e vegyület teljes biodegradációját. Ezen túl a toluol szénforrásként történő hasznosítását anaerob fototróf mikroorganizmusok esetében is leírták (Zengler et al. 1999, Harwood és Gibbson 1998). A talajok mélyebb rétegeiben, tavak, tengerek szénhidrogén-lebontását (Callaghan et al. 2006), metil-nafalatin (Sullivan et al. 2001), naftalin, benzol (Meckenstock és Mouttaki 2011) és fenantrén (Davidova et al. 2007) biodegradációjában játszhat szerepet.

2.8.1 A benzol anaerob biodegradációja

természetes biodegradációjában. 2011-ben Holmes és munkatársai a hipertermofil archea Ferroglobus placidus esetében is beszámoltak benzolbontó képességről.

Anaerob körülmények között az aromás gyűrű aktivizációja, majd lebontása a mai napig ismeretlen. A lehetséges kezdeti lépésként hidroxiláció, karboxiláció és metiláció folyamatait említik a kutatók (Weelink 2010).

2.8.2 A toluol anaerob biodegradációja

Annak ellenére, hogy a *bss* (benzil szukcinát szintáz) útvonalat először a nitrátredukáló *Azoarcus* és *Thauera* nemzetségbe tartozó fajok esetében írták le, ma már általánosan elterjedt lebontási útvonalnak gondolják a különböző redox körülmények között bontó taxonok között. 2009-ben Weelink és munkatársai egy új taxonba tartozó baktériumot írtak le, mely nitrát, Fe(III) vagy Mn(IV) redukálása mellett is képes a toluol hasznosítására. A *Georgfuchsia toluolica* obligát anaerob mikroszervezet, melyet BTEX-vegyületekkel szennyezett talajvízből izoláltak. A *Geobacter* nemzetség tagjait gyakran kimutatják szénhidrogénekkel szennyezett kárhelyeken, az elsők között írták le a vasredukáló *Geobacter metallireducens* toluol biodegradációs képességét. Ez a szigorúan anaerob mikroszervezet a Deltaproteobaktériumok osztályába tartozik és a Fe(III)-on kívül képes nitrát, Mn(IV) és humusz vegyületek elektron akceptorként történő használatára (Lovley et al. 1993). A *Geobacter grbiciae, Geobacter* sp. TMJ1 és a *Desulfitobacterium aromaticivorans* baktériumok esetében is beszámoltak a toluol biodegradációjáról vasredukáló körülmények között (Coates et al. 2001a, Winderl et al. 2008, Kunapuli et al. 2010). A szintén Deltaproteobaktériumokhoz tartozó szulfátredukáló *Desulfobacula toluolica* és *Desulfotignum toluenicum* is képes a toluol lebontására (Rabus et al. 1993, Ommedal és Torsvik 2007). Míg a Bétaproteobaktériumokhoz soroló *Dechloromonas aromatic* RCB (Chakraborty et al. 2005) fakultatív anaerob mikroszervezet klorát-perklorát, a Clostridia csoportba tartozó *Desulfosporinus* Y5 törzs (Liu et al. 2004) arzenát elektron akceptorok jelenlétében hasznosította a toluolt.

2.8.3 Az etil-benzol anaerob biodegradációjája

Anaerob etil-benzol degradációs képességet számos nitrát-, valamint egy szulfát-redukáló baktérium esetében írtak le. A toluollal való kémiai hasonlóság ellenére az etil-benzol lebontása többnyire eltérő lebontási útvonalakon megy végbe. Az *Azoarcus* nemzetségbe tartozó és ahhoz közeli EB1, EbN1 és PbN1-es törzek, valamint a *Georgfuchsia toluolica* nitrát redukciója mellett a vegyület teljes biodegradációjára képesek (Ball et al. 1996, Rabus-Heider 1998,

A szulfátredukáló Deltaprotobakétriumokhoz tartozó EbS7 törzs esetében az etil-benzol biodegradációja, azonban hasonlóan a toluoléhoz, fumarát addícióval megy végbe (Kniemeyer et al. 2003).

2.8.4 A xilolok anaerob biodegradációja

3. Anyag és módszertan

3.1 Mintavételezés

3.2 **DNS és RNS izolálás**

Célunk a BTEX-vegyületekkel szennyezett, hipoxikus talajvíz mikroba közösségének és az általuk kódolt monoaromás szénhidrogén bontásáért felelős funkciógnak vizsgálata volt. Egyes esetekben a környezeti mintákból RNS-t izoláltunk, tettük ezt azért, mivel az RNS gyors bomlása révén csak a jelenlevő, és aktív mikroszervezetekből nyerhető ki, szemben a DNS-sel, mely a mikrobák pusztulása után, valamint inaktív mikroszervezetekben is megtalálható. A talajvízmintákból fél liter, 0,2 µm pórusátmérőjű cellulóz-acetát membránon Millipore vákuum pumpa segítségével szűrtük le. A membránokról az RNS izolálást a PowerSoil Total RNA Isolation Kit-tel végeztük (MoBio Laboratories Inc., USA), a gyártó által megadott protokoll szerint.

Más esetekben, például tiszta tenyészletekből, többszöri átoltást igénylő, vagy stabil izotópos szénforrást alkalmazó mikrokozmosz kísérletek során a mintákból DNS-t izoláltunk. Tehettük ezt azért, mivel a szelekcióni hatására a mikrokozmoszokban többszöri átoltást követően csak az aktív mikroorganizmusok szaporodhattak fel, illetve a stabil izotópos jelölés módszere során csak a speciális szubsztrátot hasznosítani képes baktériumok DNS-e „jelölődött” az stabil izotóppal. A DNS izolálást szintén a MoBio Laboratories Inc. (USA) által forgalmazott PowerSoil DNA és UltraClean Microbial DNA Isolation Kitekkel végeztük a gyártói protokoll alapján.

3.3 **Agaróz gélelektroforézis**

A nukleinsav izolálás sikerességét minden esetben agaróz gélelektroforézis segítségével ellenőriztük. Ehhez 100 ml 1 x TBE (10,8 g Tris; 10,5 g bôrsav; 0,93 g Na-EDTA; 1000 cm³-re desztillált vízzel kiegészítve) pufferben magas hőmérsékleten 1 g nagy tisztaságú agarózt oldottunk fel, majd kézmelegre hűtve az oldatba 5 µl 10 mg/ml-es etidium-bromid festéket pipettáltunk, végül az egész egy fésűsorokat tartalmazó futtatókádbra öntöttük. Az etidium-bromid beépül a nukleinsav-szálba és UV fény alatt fluoreszkál, lehetővé téve a könnyed detektálást. A gél megszilárdulását követően a fésűsorokat eltávolítottuk, az így kialakult
29

zsebekbe 5 µl nukleinsav eluátum és 3 µl festék (18,6g EDTA; 20g sarcosyl; 600ml glicerin; 0,5g brómfenolkék; 1000ml desztillált víz) elegyét pipettáztuk. Minden egyes mintasor mellé standardként 4 µl DNS markert (Gene Ruler Mix DNA Ladder, koncentráció: 0,5 µg/µl, Fermentas, Litvánia) vittünk fel. A mintákat 110 V feszültségen 30 percig futtattuk, majd UV fény alatt ellenőriztük.

3.4 Az RNS átírása komplementer DNS-sé

A további vizsgálatokhoz az izolált RNS-t reverz transzskriptáz enzim segítségével cDNS-sé kellett átírni. Első lépésben az RNS-t RiboPure Bacteria RNS izoláló kit (Applied Biosystems, USA) DNÁz enzimével kezeltük, hogy az esetlegesen jelenlévő DNS-t elimináljuk. Az ily módon megtisztított RNS-t a RevertAid Premium First Strand cDNA Synthesis Kit (Fermentas, Litvánia) segítségével írtuk át cDNS-sé a gyártó által megadott protokol szerint.

3.5 PCR (Polimeráz láncreakció)

A PCR segítségével tetszőleges DNS templátból, a reakcióhoz megfelelő körülményeket biztosítva, igen nagyszámú másolatot készíthetünk két initiáló primer (oligonukleotid) és DNS-polimeráz enzim segítségével. A folyamat három lépcsőből épül fel. Első lépésben a DNS-t magas hőmérsékleten denaturáljuk, mely során a purin és pirimidin bázisok közti hidrogénhidak felbomlanak, a templátunk egyszálúvá válik. Második lépésben a hőmérséklet csökkenésével lehetővé válik a primerek templáthoz történő hibridizációja. Harmadik lépésben a hőmérséklet megemelésével a polimeráz enzim a kapcsolódó primerek végeit 5'-3' irányban elongálja, így elkészítve templát DNS-ünk kiegészítő szálát. A 3 fázist 32 ciklusban alkalmazva a kiindulási DNS-ből exponenciálisan növekedve megfelelő számú amplikonunk (10⁶-10⁹ kópia) keletkezik.

A munka folyamán ellenőrzésként negatív (DNS templát nélküli mastermix) és pozitív kontrollt (előzőleg sikeres PCR reakciót eredményező mintát használva templátként) is használtunk, így az egyes mastermix alkotók esetleges hibáit, valamint a keresztszennyezódéseket könnyebben bizonyíthatottuk, vagy kizárhattuk.

3.6 Terminális restrikciós fragmethossz polimorfizmus vizsgálata (T-RFLP)

3.6.1 DNS szakaszok felszaporítása PCR segítségével a közösségi T-RFLP analízishez

A T-RFLP egy olyan DNS mintázatot vizsgáló módszer, amely alkalmas egy mikroba közösség összetételbeli változásainak gyors nyomon követésére, elemzésére.
A cDNS-ből, vagy DNS-ből első lépésben a 16S rRNS génre specifikus PCR-t készítettünk. A baktériumok esetében a 16S rDNS körülfelül 1500 bázispár hosszúságú, ráadásul e bázispár sorozatnak egyes szakaszai minden egyes baktériumban megegyeznek, vagyis konzervált régiók. Ezen konzervált szakaszok között található variabilis szakaszok összehasonlítása által becsülihetjük az egyes fajok genetikai kapcsolatát. A 16S rDNS PCR terméket restrikciós endonukleázzal emészettük. A restrikciós enzimeket különböző baktériumok termelik az őket megtámadó vírusok DNS-ének lebontására, többnyire néhány bázis hosszúságú DNS motivumot ismernek föl és ott szétvágják a DNS szálat. Baktériumok DNS-én alkalmazva a hasítási helyek jellemzőek lehetnek egyes nemzetségekre, esetenként fajokra. Itt meg kell jegyeznünk, hogy a T-RFLP módszere nem csak 16S rDNS alapú PCR termékek, hanem például egyes funkciógén típusok elkülönítésére is alkalmazható (az egyes funkciógének kimutatását lásd a 3.11 fejezetben).

A PCR-hez használt primer pár egyik tagja fluoreszcens jelölt. A jelölés lehetővé teszi az emésztés után a terminális fragment hosszának kapilláris gélelektroforézis segítségével történő meghatározását (3.1. ábra), ezután a mintánkat a már azonosított hasítási helyel rendelkező taxonokhoz hasonlíthatunk képet kaphatunk a környezeti mintánk diverzitásáról, faji összetételéről.

A PCR mastermix egy mintára számítva 16S rDNS PCR esetén:
5 µl 10x PCR puffert (Fermentas, Litvánia), 2 mM MgCl₂-ot (Fermentas, Litvánia), 0,3 µM forward VIC fluoreszcens jelölt 27f 5’-AGAGTTTGATCMTGGCTCAG-3’ (Lane 1991, Integrated DNA Technologies, Belgium) és 0,3 µM reverse primert 519r 5’-GTNTTACNGCCGTCGCTG-3’ (Turner et al. 1999), 1 U DreamTaq™ DNS polimeráz, 0,8 µM dNTP-t (dezoxi-nukleotid-trifoszfátok) (Fermentas, Litvánia), 2 µl templátot és 50 µl végáltató kiegészítve MQ vizet tartalmazott.

![Kapilláris gélelektroforézis](image-url)
A PCR az Applied Biosystem ProFlex készülékben zajlott egy előzetesen kidolgozott program alapján, amit a 3.2. ábra szemléltet. A PCR terméket a 4.3-as pontban ismertetett agaróz gélelektroforézissel detektáltuk.

3.6.2 A közösségi PCR termék emésztése restrikciós endonukleázzal T-RFLP-hez

A fluoreszcensben jelölt PCR termékeket jellemzően AluI (AG↓CT hasítási hely), RsaI (GT↓AC), vagy FspBI (C↓TAG) enzimmel 37 °C-on emészttetük 1,5 órán keresztül. A reakció 2 µl restrikciós enzim puffert (Fermentas, Litvánia), 1 U restrikciós enzimet (Fermentas, Litvánia), 10 µl templátot és 20 µl végért fogatra kiegészítve MQ vizet tartalmazott.

3.6.3 Az emészett PCR termék tisztítása és analízise

Az emészett PCR terméket 3 µl 3M-os Na-acetat oldattal; 14,5 µl MQ vízzel, valamint 62,5 µl abszolút etanolral alaposan összekevertük és szobahőmérsékleten 10 percig inkubáltuk. Az alkohol vízeltömő hatása segít a DNS kicsapódásában, míg a nátrium acetát megakadályozza, hogy a DNS el együtt a reakció után megszabadult dNTP is kiváljon az elegyből. Ezt 20 perces centrifugálás követte 4600 g-n, 4 °C-on. A felülúszó leöntése után a mintákról 180 µl 70 %-os etanolat pipettáltunk, majd azokat 15 perccel egy 5 µl-centrifugáltuk. A felső fázist ismét leöntöttük, majd a pelletet vízmentesre szárítottuk. Az emészett PCR termékek hosszának meghatározásához a tisztítás után 30 µl steril desztillált vízben szuszpendáltuk a pelletet. A tisztított és emészett DNS-ből 0,5-1,5 µl-t adtunk 17 µl HI-DI formamid (Promega, USA) és 0,4 µl standard meghatározott hosszúságú DNS fragment (Genescan LIZ 500, Applied Biosystems, USA) keverékehez, végül az elegyet 5 perccig 95 °C-on denaturáltuk. A kapilláris gélelektroforézis ABI 3130 Genetic Analyzer (Applied Biosystem, USA) segítségével történt. A mintafelvétel 20 másodpercig történt, majd a 30 perces futtatáshoz NanoPOP-7™ polimert
(NimaGen B.V., Hollandia) használtunk 1,8 kV-on. Az eredményként kapott elektroferogramot GeneMapper 4.0 program segítségével dolgoztuk fel (Applied Biosystem, USA).

3.7 DNS klónkönyvtárak létrehozása és feldolgozása

3.7.1 A klónkönyvtárak létrehozása

A közösség összetételének és a katabolikus diverzitásának feltárása során cDNS vagy DNS elegyből a 3.6.1. fejezetnek megfelelően 16S rDNS és funkciógén PCR-eket készítettünk, azzal a különbséggel, hogy a forward primerek nem tartalmazták fluoreszcenc jelölést. A további felhasználáshoz a PCR termékek tisztítása szükséges, hogy a primer dimereket, maradédk NTP-t eltávolítsuk a reakciómixből, ehhez NucleoSpin Extract II. (Macherey-Nagel, Németország) kitet használtunk, a gyártó által megadott protokoll szerint. A tisztítás eredményét ismét gélelektroforézissel ellenőriztük.

A klónkönyvtárak létrehozását TOPO® TA Cloning® Kittel (Invitrogen, USA) végeztük. A ligáló reakció összetétele: 1 μl 10x ligáló puffert, 2 μl pCR®.1-TOPO® klónozó vektor, 3 μl PCR termék, 1 μl T4 DNS ligáz enzim és 3 μl MQ víz. A reakció 4°C-on, egy éjszakán át zajlik.
A vektorokat kompetens TOP10 *Escherichia coli* sejtekbe (Invitrogen, USA) történő transzformálásának menete:

- A ligálási reakciómixból 50 μl kompetens sejthez 3μl ligátumot adtunk, majd jégen 20 percig, 42°C-on 1 percig, végül ismét jégen 3 percig inkubáltunk.
- A következő lépésben 0,5 ml SOC médiumot mértünk a transzformálási reakciómixbe, melyet egy órán keresztül 37°C-on és 180 rpm-en rázótermosztában inkubáltunk. A SOC médium alkalmazása a sejtek regenerálódását segíti, összetétele: 20 g tripton, 5 g élesztőkivonat, 0,5 g NaCl, 2,5 ml (1M) KCl, dH2O 1000 ml-re kiegészítve.
- A sejtek ezt követően a korábban előkészített, IPTG-vel (100 mM, 100 μl/Petri csésze, izopropil-tio-galaktozid, Promega, USA), X-Gal-lal (20 μg/ml, 20 μl/Petri csésze, 5-bróm-4-klór-3-indolin-β-D-galaktozid, Promega, USA) és ampicillinnel (100μg/ml, Sigma-Aldrich, USA) kiegészített LB (1000 ml vízhez; 5 g élesztő, 10 g tripton, 9 g NaCl, 20 g agar) táplemezre szélesztettük, majd 37°C-os termosztában inkubáltuk egy éjszakán át. Az IPTG a β-galaktozidáz szintézisét indukálja. A vektor felvételével a gazdasejtek rezisztenciát nyernek ampicillinre, az inzert sikeres beépülésével megszűnik a β-galaktozidáz aktivitása és a telepek fehér színnel jelennek meg az LB lemezeken.
- A pozitív telepeket steril fogpiszkálóval átoltottuk egy új, ampicillines LB táplemezre, majd 37°C-os termosztában inkubáltuk egy napig. A telepeket steril fogpiszkálóval 30μl MQ vízben szuszpendáltuk.
- A szuszpenziót 5 percig 98°C-on inkubáltuk, majd 5 percig, 4600 g-n centrifugáltuk. Az így nyert felülüszo tartalmazza az inzertet hordozó plazmid DNS-t. A lizátumot tartalmazó PCR csöveket -20 C°-on tároltuk a későbbi felhasználásig.

A klónkönyvtár létrehozásának folyamatát a 3.3. ábra szemlélteti.

![3.3. ábra A 16S rDNS klónkönyvtár kialakítása](image-url)
3.7.2 Az inzert visszanyerése a klónokból PCR segítségével
A klónkönyvtárak feldolgozásának első lépéseket amplifikáltuk az egyes DNS szakaszokat M13f és M13r primerek segítségével, amelyek az inzertet közrefogó vektorszekvenciákhoz illeszkednek (Promega, USA). A PCR reagensek és körülmények megegyeztek a fent leírtakkal (4.6.1 pont). A PCR terméket agaróz gélelektroforézessel detektáltuk. A további felhasználáshoz a PCR termékeket a korábban is említett NucleoSpin Extract II. (Macherey-Nagel, Németország) kittel tisztítottuk. A tisztítás eredményét ismét gélelektroforézissel ellenőriztük.

3.8 Sanger-féle dideoxi szekvenálás
Ahhoz, hogy a PCR termékek bázissorrendjét meghatározhasuk azok szekvenálására van szükség, melynek elve az úgynevezett dideoxi-, vagy Sanger-féle láncterminációs módszer. A reakcióélegen normál és fluoreszcens festékként jelölt módosított dideoxi-nukleotidok (a ribóz 2’ és 3’ helyéről is hiányzik az oxigén) is találhatók. A dideoxi, vagy A/T/G/C stop-nukleotidokat a polimeráz enzim nem különbözteti meg a normál bázisoktól és azokat is beépíti a komplementer szálba, a hiányzó kapcsolódási pont (3’-H csoport) miatt azonban ezen a ponton a komplementer lánc szintézise megszakad. A reakció eredményeképpen a templát DNS különböző hosszúságú fragmentjei jönnek létre, végükön a módosított fluoreszcens nukleotidokkal. A szekvenáló reakcióélegen összetétele a következő, egy reakcióra (végtérfogat 10 µl) számítva:

- BigDye (Applied Biosystems, USA) - 1 µl
- BigDye Buffer (Applied Biosystems, USA) - 1,5 µl
- Primer (27f) - 0,5 µl
- templát DNS – 5–20 ng (1-7 µl)
- MQ víz végterfogatra kiegészítve

A reakció egy 10 másodperces, 94 °C-os denaturációval kezdődik, majd 54 °C –on 15 másodperc alatt a primer a templátokhoz hibridizál, végül 72 °C -on, 4 perceig folyik a DNS szál szintézise. A három szakaszból álló ciklus 28-szor ismétlődik, majd a gép 4 °C -ra húti a mintákat. A szekvenáló reakció termékét etanol-precipitálással tisztítottuk. Az etanol-precipitálás az 4.6.3-as pontban leírtak szerint történt, a kiszáritott mintákat 20µl Hi-Di formamidban oldottuk vissza. A szekvenálás ABI PRISM 3130 Genetic Analyzer géppel történt (Applied Biosystems, USA) A mintafelvétel 10 másodperceig történt, majd a 45 perces futtatáshoz NanoPOP-7TM polimert (NimaGen B.V., Hollandia) használtunk 1,4 kV-on.
3.9 Bázissorrend és filogenetikai elemzés

A PCR-ek során esetleges kiméra szekvenciákat az online elérhető Bellerophone program (Huber et al. 2004) alkalmazásával szűrtük ki. A kimérák az eredetitől eltérő szekvenciák, melyeket a bázisok olyan károsodása eredményezhet, melyek blokkolják a Taq polimeráz enzim működését így az egy másik templátról folytatja a szintézist.

A funkciógének filogenetikai fáinak szerkesztéséhez a távolságmatrix alapú neighbor-joining, míg a 16S rDNS alapú fához karakter alapú maximum likelihood módszert is alkalmaztuk Bray-Curtis hasonlósági index felhasználásával 1000 ismétlés (bootstrap). A klónkönyvtárak klaszter analízisét az UNIFRAC program (Lozupone és Knight 2005) segítségével végeztük.

A T-RFLP elektroferogramok alapján a minták klaszter analízisét, valamint az egyes 16S rDNS alapú elektroferogramokon feltüntetett Shannon diverzitás értékeket a Paleontological Statistics szoftver (Hammer et al. 2001) segítségével végeztük. A T-RFLP futások egymáshoz illesztését 0,5 bp konfidencia intervallummal a T-Align online program (Smith et al. 2005) segítségével végeztük, az elemzésből kizártuk azokat a csúcsokat, amik nem érték el az összterület 1%-át.

3.10 Csoportreprezentáns klónok terminális fragment (T-RF) hosszának meghatározása

Annak érdekében, hogy a T-RFLP elektroferogramokon kapott csúcsokat be tudjuk azonosítani, a klónkönyvtárak reprezentás tagjainak 16S rDNS-ét restrikciós fragment analízis alá vetettük. Az egyes klónok restrikciós enzimmel történő emésztése után kapott csúcsokat összehasonlítottuk a közösségi, vagy fukciógének T-RFLP csúcsaival.

3.11 Katekol 2,3-dioxigenáz és benzil szukcinát szintáz gének kimutatása a közösségi mintákából

Az aromás gyűrű meta-típusú hasításáért felelős katekol 2,3-dioxigenáz gének expresszió vizsgálata fontos része volt munkánknak, hiszen így képet kaphattunk arról, hogy a vizsgált hipoxikus közegben mely enzimek játszanak szerepet az aromás szénhidrogének lebontásában.

3.1. táblázat Az egyes szénhidрогének bontásában szerepet játszó enzimeket kódoló funkciógének kimutatására általunk alkalmazott primerpárok

<table>
<thead>
<tr>
<th>Primer pár</th>
<th>Célszekvencia</th>
<th>Primerek bázissorrendje</th>
<th>Annelációs hőmérséklet</th>
<th>PCR termék hossza(bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XylE1 f/r</td>
<td>I.2.A alcsaládba tartozó C23O funkciógének</td>
<td>5’CCCGCCGACCTGTACATGSCATG-3’</td>
<td>61.5 °C</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’TCAGGTCAKCAGGGTCAGA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XylE2 f/r</td>
<td>I.2.B alcsaládba tartozó C23O funkciógének</td>
<td>5’GTAATTCGCCCTGGCTAYGTICA-3’</td>
<td>64 °C</td>
<td>906</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’GGTGTTCGCAGTCATGAAGGCTA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XylE3 f/r</td>
<td>I.2.C alcsaládba tartozó C23O funkciógének</td>
<td>5’TGYTGGAAGYARTGGGAAYAA-3’</td>
<td>50 °C</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’TASGTRTASACITCSGTRAA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDO-K2 f/r</td>
<td>3-izopropilkatekol (3-IPC) 2,3-dioxigenáz</td>
<td>5’GAAAAAAGTGNGTTGTGGAGGAGG-3’</td>
<td>62°C</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’CGCTTTAGCCKGCACATCGACCC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7772 f/8546r</td>
<td>Benzil szukcinát szintáz funkciógének</td>
<td>5’GCAT ATG ACC GAC GCS ATY CT-3’</td>
<td>52°C</td>
<td>794</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’TCTG GTC RTT GCC CCA YTT-3’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.12 Differenciált dideoxi primerhosszabítás - Single Nucleotid Primer Extension

hiánya miatt ugyanis a lánchosszabítás megszakad. A reakcióelegyben jelen lévő négyféle dideoxinukleotid (A, T, G, C) különböző fluoreszcens jelölést hordoz (Nikolausz et al. 2009), így a beépült ddNTP filogenetikai információt hordozhat. Ehhez persze az oligonukleotid próbánkat olyan célszakvénciára kell terveznünk, ahol a beépülő nukleotid jelenti az eltérést a különböző szakvéncia variánsok között. A PCR termékek SNUPE irányú felhasználása megköveteli, hogy a be nem épült nukleotidokat és primereket magas hatásfokkal távolítsuk el. Elnézést íme az eljárás leírásából:

1. A PCR termék NucleoSpin Extract II. (Macherey-Nagel, Németország) kitetű történő tisztítása után még egy enzimmatikus tisztítást is alkalmaztunk. Ennek során 42 μl tisztított PCR termékhez adtunk 12 U alkalikus foszfátáz, 6 U exonukleáz I-et (SAP enzim; ExoI; Fermentas, Litvánia), majd a reakcióelegyet 60 μl-re egészítettük ki az SAP enzim pufferével. Az így kapott reakcióelegyet 37 °C-on inkubáltuk 1 órán keresztül, majd az enzimek inaktivációja 75 °C-on történt 15 percig.

2. A SNUPE reakció összetétele a következő: 1,2 μl SNaPshot multiplex kit reagens (Applied Biosystems, USA), 1,8 μl 5x puffer, 0,5 μl primer vagy primer keverék (az 4.1.5. fejezet 1.2 C típusú C23O klónkönyvtár eredményei alapján tervezett primereket a 8.2. mellékletben ismertetem), 0,75 μl tisztított PCR termék, végül MQ vízzel a reakcióelegyet 10 μl-re egészítettük ki. A 20 cikluson keresztül ismétlődő hőprofil a következő volt: 96°C 10 mp, 55°C 5 mp, 60°C 30 mp. A reakciót követően a felesleges nukleotidok eltávolítására 1 U SAP enzimet adtunk a reakcióelegyhez, majd 37°C-on, 1 órán keresztül inkubáltuk, végül 15 percig 75°C-on inaktiváltuk az enzimet.

3.13 Stabil izotópos jelölés (SIP)

A stabil izotópos jelölés (stable isotope probing-SIP) módszere lehetőséget ad arra, hogy egyes egyedi tápanyagokat (esetünkben a BTEX-veyületek valamelyikét) hasznosítani képes mikroorganizmusokat azonosíthassuk a környezeti mintákban. A módszer során a mikrokozmoszokhoz a legtöbb esetben 13C nehéz szénizotópot tartalmazó végületet adnak, azonban akadnak példák 15N és 18O izotópok alkalmazására is (Dumont és Murrell 2005, Cadisch et al. 2005, Bell et al. 2008, Hungate et. al 2015). Az adott végületet hasznosítani képes baktériumok a nehezebb izotópokat anyagcserejük során beépíti a szervezetükbe, így e sejtalkotók (RNS, DNS, fehérjék) grádiens ultracentrifugálás módszerével elválaszthatóak a nem
aktív mikroorganizmusok azonos sejtalkotótól (3.4. ábra). A kísérletek során kontrollként minden esetben az adott vegyület izotóposan nem jelölt változatát adják a mikrokozmoszokhoz.

A mi vizsgálatunkhoz 13C$_7$, vagyis minden szénatomon jelölt toluolt használtunk egyedi szénforrásként, az inkubációs idő elteltével a mintából DNS-t izoláltunk a korábban ismertetett módon. A kísérlet pontos körülményeit a könnyebb érthetőség miatt az eredmények fejezetben részletezem (4.2. fejezet). A DNS koncentrációját Qubit 2.0 fluorométert és Qubit® dsDNA BR Assay Kit-et (Invitrogen™) használva állapítottuk meg. A kit egy ultraszenzitív DNS festék tartalmaz, melynek fluoreszcenciája a nukleinsavhoz kötődve a többszörösére növekszik, ezt a változást detektáljuk a fluorométerrel. A DNS-ből 1 μg-ot grádiens pufferrel (0.1 M pH-jú Tris-HCl, 0.1 M KCl, 1 mM EDTA) elegyítettünk, amit végül a cézium-kloridos grádiens médiummal (átlagos sűrűség 1.71 g/mL, Calbiochem, Merck, Darmstadt, Németország) 5 ml-es poliállomer ultracentrifuga csövekbe töltöttünk (Beckman, USA). Ezt követte a 180000 g-n és 65 órán keresztül tartó ultracentrifugálás Beckman VTI 65.2 (USA) vertikális rotor segítségével Centrifon T-2190 centrifugában (Kontron Instruments, Milánó, Olaszország).

Perfusor V típusú fecskendő pumpa segítségével (Braun, Melsungen, Németország) frakcionáltuk a mintákat, amelyek sűrűségét refraktométerrel határozottuk meg. Az egyes frakciókból a DNS-t 30%-os polietilénglikol (PEG) és glikogén keverékével, majd 70%-os alkohol hozzáadásával precipitáltuk. Végül a tisztított DNS mennyiségét az egyes frakciókban SYBR Green alapú 16S rDNS qPCR segítségével állapítottuk meg. A real-time, azaz valós idejű, vagy más néven kvantitatív PCR módszert az amplifikált DNS mennyiségének reakció közbeni pontos meghatározására fejlesztették ki. Az eljárás során a PCR termékek detektálása a kettősszálú DNS-hez általánosan kötődő fluoreszcens festékekkel, vagy sekvenciaspecifikus oligonukleotid próbákkal történhet. Az általunk használt SYBR Green egy kettősszálú DNS-hez kötődő fluoreszcens festék, melynek fluoreszcenciája a szálakhoz kötődve nagyértékben megnövekszik, így lehetővé téve a PCR során a keletkező amplikonok kvantifikációját. A qPCR-ben a SYBR Green fluoreszcenciájának detektálása a lánchosszabítási lépés végén történik.
A bakteriális 16S rRNS gének kvantifikációját Ba519f (5’ AGA GTT TGA TCM TGG CTC AG-3’) és 907r (5’-CCG TCA ATT CCT TTG AGT TT-3’) primerekkel (Muyzer és Smalla 1998) végeztük Mx3000P készülékben (Stratagene, La Jolla, CA, USA). A PCR reakció összetevői 50 μl-re a következők voltak: 1 x PCR puffer, 1.5 mM MgCl₂, 1.25 U Taq polymerase, 0.1 mM dNTP (Fermentas, St. Leon-Rot, Németország), 10 mg BSA (Roche, Penzberg, Németország), 0.1 SYBR Green és ROX festékek (ThermoFischer Scientific), 0.25 mM forward és reverse primer, és 2 μl DNS templát. A PCR 40 cikluson keresztül ismétlődő hőprofilja a következő volt: 94 °C, 30 mp; 52 °C, 30 mp; 70 °C, 30 mp. Standardként az *Echerichia coli* teljes hosszúságú 16S rRNS génjét használtuk 10⁷ és 10⁰ köpia/ml koncentrációban.

Az egyes kísérleti beállítások grádienseiből az eredmények alapján 8-8 frakciót választottunk ki 16S rDNS T-RFLP analízisre. A PCR reakcióhoz FAM fluoreszcensen jelölt Ba27f és 907r primereket használtunk, majd a termékeket Rsal restrikciós enzimmel emésztettük. A kapilláris gélelektroforézis után az elektroferogramok kiértékelését a 3.6.3 fejezetben leírtak szerint végeztük. Az egyes frakciók 16S rDNS diverzitásának feltárása piroszekvenálás módszerével történt, melynek leírását a 3.14.1 fejezetben ismertetem.

3.14 Újgenerációs DNS-szekvenálási módszerek

Az ezredfordulót követően újgenerációs szekvenálási technológiák (pl. piroszekvenálás, félvezető alapú szekvenálás, reverzibilis terminátort alapú szekvenálás) jelentek meg. Ezek közös vonása, hogy egyszerre számtalan szálon párhuzamosan folyik a DNS szekvenálása. Összehasonlítva a technológiákat a korábban ismertetett Sanger féle módszerrel, az előbbiek esetében általában a rövidebb leolvasási hossz és bizonytalanabb bázispontosság ellenére, a számos párhuzamos reakciók köszönhetően a végteljesítmény nagyobb. Az egyes platformok leolvasási sebessége akár több ezer bázis is lehet másodpercenként, valamint az egy bázisra számolt költség is jóval alacsonyabban alakul (Pettersson et al. 2009, Mardis et al. 2008). Az újgenerációs módszerek közül mi a kutatásunk során a 454 Life Sciences által kifejlesztett piroszekvenálás és a DNA Electronics Ltd. által kidolgozott, majd az Ion Torrent Systems Incorporation révén továbbfejlesztett félvezető alapú szekvenálási technológiákat alkalmaztuk, így a továbbiakban ezeket részletezem.

3.14.1 Piroszekvenálás

A piroszekvenálás módszerét két évtizede dolgozták ki, alapelve, hogy a DNS-polimeráz aktivitását valós időben detektálják egy kemilumineszcens vegyület segítségével. Amikor egy
nukleotid beépül a DNS szálba, pirofoszfát és hidrogénion keletkezik, az előzőnek a mennyiségét mérík egy kapcsolt reakcióval. Egyszerre csak egyféle nukleotidot adnak a rendszerhez, ha ebből több is beépül a szintetizált szálba, akkor a fényintenzitás növekedése arányos lesz a felhasznált nukleotidok számával.

A piroszekvenálást a Zhang és Lüders által ismertetett módon a müncheni Helmholtz Zentrum munkatársai végezték (2017). A multiplex PCR a 454 GS FLX+ protokol (Roche) alapján Ba27f (5’-AGA GTT TGA TCM TGG CTC AG-3’) és Ba519r (5’- TAT TAC CGC GGC KGC TG-3’) primerekkel, Lib-L adapterekkel és MID (multiplex identifier) azonosító oligókkal történt. Az amplikonokat 1,5% agaróz gélen vizualizálták. Végül többszöri tisztítás és kvantifikálást követően az emulziós PCR és a piroszekvenálás a GS FLX Titanium protokolljai alapján történt. A szekvenciákat a GREENGENES online adatbázis és applikáció (DeSantis et al. 2006) segítségével szerkesztették. Az átlagosan 450 bázispár hosszúságú szekvenciák elemzését a SILVAngs internetes adatbázis segítségével végeztük (Quast et al. 2013).

3.14.2 Félvezető alapú szekvenálás

Ahogyan azt az előzőkben ismertettük a DNS szál felépülése során egy bázispár kapcsolódásakor kovalens kötés alakul ki és a reakció során pirofoszfát molekula valamint egy 3.5 ábra A piroszekvenálás sémája (Nyitray et al. 2013)
A feltöltött adatok kiértékelését az MG-RAST (Metagenomics Rapid Annotation using Subsystem Technology) online szoftvercsomag (Meyer et al. 2008) segítségével végeztük. A taxonómiai értékeléshez az online felület M5nr protein és riboszómális RNS adatbázisait egyaránt használtuk.

3.15 Új baktériumfaj leírásához szükséges vizsgálatok

A doktori munkám alatt a kísérleti mintákából és egyéb kárhelyekről is próbáltunk klasszikus mikrobiológiai módszereket olyan törzseket felülvizsgálni, izolálni, amelyek rendelkeznek a monoaromás szénhidrogének hipoxikus bontásaért felelős enzimekkel. Az izoláláshoz döntő többségben R2A táptalajt (0,5 g élesztő kivonat; 0,5 g proteózpepton; 0,5 g kazein hidrolizátum; 0,5 g glükóz; 0,5 g keményítő; 0,3 g K₂HPO₄; 0,05 g MgSO₄ x 7H₂O; 0,3 g nátrium-piruvát; 20 g agar; 1 liter desztillált víz), vagy annak módosított glükóz nélküli változatát használtuk. A próbálkozások során számos könnyen tenyészthető Pseudomonas és egyéb már jól ismert fajt izoláltunk, ezen eredmények ismertetésére dolgozatomban nem térek ki. Azonban egy esetben sikerült egy ezidáig ismeretlen baktériumfajt izolálnunk, mely rendelkezik egy számunkra fontos I.2 C katekol 2,3-dioxigenáz enzimtípussal. A következőkben szeretném bemutatni, hogy milyen
vizsgálatok szükségesek egy ilyen, a tudomány által még nem ismert mikroorganizmus
leírásához.
Az elmúlt 100 évben számos módszert alkalmaztak a prokarióta rendszertanban, azonban még
jelenleg is mind a tradicionális, mind az új típusú technikák komplex alkalmazása ajánlott annak
érdekében, hogy eldönthessük, valóban egy új fajt sikerült-e izolálnunk. Meg kell jegyeznünk,
 hogy az újgenerációs technikák fejlődésével a közeljövőben várható, hogy e módszerek egy
részének alkalmazását felváltja az egyes törzsek genomszekvenálása és az az alapján történő
rendszertani besorolás.
Az egyes baktériumtörzsek azonosítása napjainkban egyértelműen a 16S rRNA gének
szekvenciájának meghatározásán alapul. Több kutatás is kimutatta, hogy abban az esetben, ha
két törzs ezen génje kevesebb, mint 97%-os hasonlóságot mutat egymással, akkor azok külön
fajba sorolhatóak. A 95% alatti homológia esetén pedig számba kell vennünk annak lehetőségét,
 hogy egy új nemzetséggel van dolgunk (Martínez-Murcia és Collins 1990, Collins et al. 1991,
97%-ot és mégis gyanúnk van, hogy új fajról beszélhetünk, számos olyan vizsgálatra van
szükség, mint a DNS-DNS hibridizáció (DDH), vagy az egyéb génscsoportok (Multi Lókusz
Szekvencia Analízis) összehasonlítása.

3.15.1 DNS-DNS hibridizáció
A DDH értékek esetében többsnyire 70% alatti egyezés esetén beszélhetünk új fajról (Brenner
et rövid szakaszokra tördelik, majd valamilyen módon (pl. radioizotóposan) megjelölik. Több
hibridizációs, és tisztítást tartalmazó lépés után, a jelölt DNS-ét az összehasonlítandó törzs
hasonló módon előkészített jelölletlen DNS-ével együtt hidroxiapatit oszlopra viszik fel. Az
oszlopot vízfürdőben 2,5 °C-onként a 60-90 °C-os hőmérsékleti tartományon belül melegítik. Az
eyes emelések után a denaturált DNS-szálakat lemoszták és azok mennyiségét a hőmérséklet
függvényében ábrázolják. Végül az ugyanabból a fajból származó DNS molekulák és a
hibridizált molekulák olvadási hőmérsékletének különbsége jellemzi a hasonlóság mértékét.
A doktori munkám során leírt baktériumfaj esetében e vizsgálatot a DSMZ GmbH – Német
Mikroorganizmusok és Sejtkultúrák Gyűjtemények Leibniz-Intézetében (Braunschweig, Németország) Dr. Cathrin Spröer és munkatársai végezték, melyhez 3 g tömegű nedves
biomasszát küldtünk 1:1 v/v arányú izopropanol és víz keverékbén. A DDH-hoz az egyes
törzsek sejtjeit Constant Systems TS 0.75 kW típusú géppel roncsolták (IUL Instruments), majd
a DNS-t a nyers lizáttamból a Cashion és munkatársai (1977) által leírt módon, kromatográfiásan
hidroxiapatit segítségével tisztították. A DNS-DNS hibridizációt a De Ley és munkatársai

3.15.2 A guanin és citozin százalékos arányának meghatározása
A teljes genomi DNS guanin és citozin (G+C) tartalmának vizsgálatát szintén a DSMZ végezte el. Az általunk küldött 2 g tömegű nedves sejtmasszából a DNS izolálása az előző fejezetben ismertetett módon történt. A DNS-t P1 nukleáz és szarvasmarhából származó alkalikus foszfatázzal választottuk nukleotid alkatókrak (Mesbah et al. 1989), majd azokat Tamaoka és Komagata (1984) módszere alapján reverz fázisú HPLC készüléken szeparáltuk el egymástól. Kontrollként Lambda DNS-t (az *E. coli* bakteriofájga) és három ismert genonszekvenciájú DNS-t használtuk, melyek G+C értéke 43-72 mol% között alakult. A G+C értékeket a deoxiguanozin és timidin arányából számítottak Mesbah és munkatársai (1989) alapján.

3.15.3 Fenotípusos és kemotaxonómiai vizsgálatok

A hőmérsékleti optimum megállapításához a tenyészeteket 5 és 45 °C között inkubáltuk R2A agaron, míg a pH toleranciát (pH 3-11, 0,5 egységenként emelve) ugyanilyen típusú folyékony táplevesben vizsgáltuk.

A további asszimilációs teszteket, valamint enzimaktivitás mérését az API 50 CH, API 20 NE és API ZYM (bioMérieux) kitekkel végeztük. Az anaerob körülmények közötti tenyésztést 0,15% (w/v) KNO₃ hozzáadásával, valamint anélkül R2A tápoldatokban vizsgáltuk 28 °C-on. Az anaerob körülmények biztosításához 100 ml-es szérum üvegekbe (Glasgerätebau Ochs) 75 ml steril tápoldatot töltöttünk, lezárultuk, majd nitrogénnel gázoltak.
kihajtottuk az oxigént. Az oldott oxigén koncentrációkat az üvegben PSt3 szenzor spotokkal (PreSens) és Fibox 3 trace v3 fibre optikai oxigén mérével non-invazív módon vizsgáltuk.

3.15.4 Sejtmembrán zsírsav analízis
Az új faj jelölt sejtmembrán zsírsav analízisét a DSMZ végezte. A zsírsav-metil-észterek vizsgálatát a Microbial Identification System (MIDI; Microbial ID) előírásai alapján végezték.

3.15.5 Respiratórikus és lipokinonok analízise

3.15.6 Poláris lipidek meghatározása

3.15.7 Szénhidrogénbontó képesség meghatározása
Mivel a vizsgált baktériumtörszet szénhidrogénnel szennyezett kárhelyről izoláltuk, klasszikus gravimetriás és molekuláris biológiai módszerekkel is vizsgáltuk a biodegradációs képességét.
A gravimetriás méréshez a baktériumot 3 napig 28 °C-on R2A táptalajon felszaporítottuk. Ezt követően 5 ml sejtszuszpenziót 100 ml OIR III tápoldatba [5 g (NH4)2SO4, 0.5 g KH2PO4, 1 g K2HPO4, 0.5 g MgSO4,x 7 H2O, 0.2 g CaCl2 x 6H2O, 0.01 g FeSO4 x 7 H2O, 0.5 g pepton, 0.5 g
élesztő kivonat, 1000 ml dH₂O-j oltottunk, melyet 2 ml gázolaj-kőolaj (3:2, v/v) keverékek
egészítettünk ki. A tenyészeteket 5 napon keresztül 20 °C-on 150 rpm sebességgel rázattuk. Az
inkubációt követően a maradék szénhidrogén keveréket 50 ml n-hexánnal extraháltuk az OIR III
tápoldatból. A fázisok különválása után a vizes fázist leengedtük, majd az olaj-oldószert
everéket leszűrtük. A Düren 619 G ¼ típusú szürőpapírra egy kevés Na₂SO₄-et helyeztünk,
ezzel megkötve az olajos fázisban esetlegesen megmaradt vizet. A vizes fázist a rázótölcsebére
töltöttük, majd megint összekevertük n-hexánnal, az olajos fázist ismét leszűrtük, végül a
folyamatot még egyszer megismételtük. A kezelés után a még vizes fázisban maradt
szénhidrogén komponenseket kloroformmal oldottuk ki. A rázás után a kloroformos fázis
fajszúlyánál fogva a vizes alatt helyezkedik el, megkönnyítve az elválasztást. Az átszűrt
oldószeres olajat előzetesen analitikai mérleggel lemért gömblobikba töltöttük, majd az
oldószereket és a szénhidrogéneket Heidolph típusú bepárlókészülékekkel forráspont különbség
alapján szétválasztottuk. A bepárlás után a gömbobbikokat száritószerekben 65°C-on 45
percig száritottuk, így eltávolítva az esetlegesen visszaradott vizet, illetve oldószert.
Kontrollként a gázolaj-kőolaj keveréket szintén 3:2 arányban tartalmazó, rázatott, de
baktériumtenyészettel be nem oltott tápoldatot használtunk.
Mivel az izolált törzsünk a Bétaproteobaktériumok osztályába tartozott és e baktériumok
rendelkezhetnek az I.2.C típusú katekol 2,3-dioxigenáz funkcióvénekkel (Táncsics et al. 2012,
2013), ezért megvizsgáltuk, hogy az új faj jelölt rendelkezik-e ezen funkcióvénekkel. A PCR
reakció során a már korábban ismertetett XYLE3F és XYLE3R primereket használtunk
(Táncsics et al. 2013).
4. Eredmények

4.1 A siklósi BTEX-vegyületekkel szennyezett, hipoxikus talajvíz mikrobaközösségének hosszútávú monitoringja

4.1.1 A mintavételi terület jellemzése

4.1. táblázat Szennyezőanyag koncentrációi az ST2 mintavételi kútban

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>benzol</td>
<td>340</td>
<td>616</td>
<td>320</td>
<td>565</td>
<td>788</td>
</tr>
<tr>
<td>toluol</td>
<td>64</td>
<td>102</td>
<td>54</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>etil-benzol</td>
<td>966</td>
<td>1330</td>
<td>2420</td>
<td>1570</td>
<td>891</td>
</tr>
<tr>
<td>xilol</td>
<td>6700</td>
<td>7450</td>
<td>6880</td>
<td>6030</td>
<td>5320</td>
</tr>
<tr>
<td>egyéb alkilbenzolok</td>
<td>6710</td>
<td>8790</td>
<td>8220</td>
<td>6130</td>
<td>7030</td>
</tr>
</tbody>
</table>

A talajvíz hőmérséklete mindkét kút esetében 14-17 °C között, a pH 6,8 és 7,3 között alakult a mintavételi időszakban, tehát e paraméterek viszonylag állandónak tekinthetők a vizsgált területen. Hidrogeológiai szempontból a mintavételi időszak két fő részre osztható: míg 2010 májusa és decembere között a teljes csapadékmennyiség 788 mm-nek adódott és a havi csapadékosszeg követte a Kárpát-medencében jellemző szezonális dinamikát, addig 2011 januárja és májusa között extrém száraz időjárást eredményezett, a teljes csapadékmennyiség mindössze 85 mm volt, közel egyenletes eloszlásban. Ennek megfelelően 2010 decemberétől folyamatos csökkenést tapasztaltunk a talajvíztábla szintjében, míg az a monitoring időszak
végére extrém alacsony szintet ért el. Nem meglepő módon a havi csapadékmennyiség és a talajvíz szintje, valamint a redox potenciál (Eh) értékek között pozitív korreláció adódott (r = 0.717, P = 0.006 és r = 0.718, P = 0.006). A növekvő csapadékmennyiség a redox potenciál értékek növekedését okozta (pl. 2010 szeptemberében), míg a száraz időszakban folyamatos csökkenést tapasztaltunk.

Az oldott oxigén koncentrációk a szennyezett kútban - ST2 - alacsony 0,17 és 1 mg/l, míg a háttér kútban – SKV – magasabb 1,9 és 3,5 mg/l értékek között alakultak a vizsgált időszakban (4.2. ábra). Tehát az általunk vizsgált monitoringkútban hipoxikus körülmények uralkodtak, mivel ha egy közeg oldott oxigén koncentrációja kisebb, mint 2 mg/l, az hipoxikusnak nevezhető (Kukor és Olsen, 1996).

Az oldott oxigén koncentrációjának változása az ST2-es és SKV monitoring kutakban

Az oldott oxigén koncentrációjának e nagymértékű különbsége a szennyezett és a háttér kút talajvíz mintái között egyértelműen a szénhidrogén szennyezésből adódott. A felszín alatti vizek ugyanis általanosságban véve oligotrófnak, azaz tápanyagban, szénforrásban szegénynek tekinthetőek. A szénhidrogén szennyezés hatására azonban megőrverte a mikrobák számára hozzáférhető szénforrás mértéke a közegben, ezáltal megőrverte a mikrobiális anyagcsere aktivitás, ami az elektron akceptorok koncentrációjának csökkenésével jár.

A szennyezett ST2-es kútban nagyságrendileg kisebb volt a nitrát koncentrációja is a háttérkúthoz képest, egyedül 2010 májusában detektáltak mérhető mennyiséget. Az alacsony nitrát koncentrációkból arra következtettünk, hogy az ST2 kút mikroba közösségében nitrátlégzés is megfigyelhető. Az ST2-es és SKV kutak vízkémiai paraméterei az 4.2-es táblázat foglalja össze. A táblázatban feltüntetett Fe(II) a vasredukáló, a metán a metanogén mikroszervezetek légzési terméke, míg a SO₄²⁻ elektron akceptorként funkcionál a szulfátredukciót végző mikrobák számára.

4.2. ábra Az oldott oxigén koncentrációjának változása az ST2-es és SKV monitoring kutakban
4.2. táblázat A mintavételi és a háttér kutak vízkémiai paraméterei

<table>
<thead>
<tr>
<th>Paraméter</th>
<th>ST2 (szennyezett)</th>
<th>SKV (háttér)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ (mg/l)</td>
<td>0,60</td>
<td>0,17</td>
</tr>
<tr>
<td>Nitrát (mg/l)</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>Fe(II) (mg/l)</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>SO₄²⁻ (mg/l)</td>
<td>24</td>
<td><5</td>
</tr>
<tr>
<td>CH₄ (mg/l)</td>
<td>1,90</td>
<td>1,24</td>
</tr>
<tr>
<td>pH</td>
<td>6,88</td>
<td>6,96</td>
</tr>
<tr>
<td>E₅⁺ (mV)</td>
<td>148</td>
<td>8</td>
</tr>
<tr>
<td>vízszint (mm)</td>
<td>-2530</td>
<td>-3120</td>
</tr>
</tbody>
</table>

Ezen paraméterek elemzéséből valószínűsíthető, hogy a szennyezési csóva középpontjában a sediment oxigénmentes rétegeiben nitrátredukció túl vas-, szulfát-légzés, valamint metanogenezis is megfigyelhető. Az SKV háttér kútban a metán és Fe(II) koncentrációk egy hónaptól eltekintve a kimutathatóságú érték alatt maradtak, míg a szulfát koncentrációja 70 és 90 mg/l között alakult. A vízkémiai eredmények összességükben alátámasztják, hogy a szennyezett ST2-es kút mintái oxigénlimitált közégből származnak, ahol már nem kizárólag az oxigén szerepel légzési szubstrátként a mikroba közösség számára. A szennyezés által nem érintett SKV háttér kútban ezzel szemben többé-kevésbé aerob körülmények uralkodtak a monitoring teljes ideje alatt, és nincs nyoma annak, hogy az oxigénen kívül más, alternatív elektron akceptorok is szerepet játszanak, mint légzési szubsztrát.

A kutatásunkban szerettük volna kideríteni, hogy a fent bemutatott, szénhidrogénekkel szennyezett hipoxikus talajvízben milyen a mikrobaközösség összetétele, valamint annak hosszútávú dinamikája. Ennek érdekében a beérkezett talajvíz mintákat különböző molekuláris biológiai módszerekkel vizsgáltuk (T-RFLP, molekuláris klónozás) RNS alapon.
4.1.2 Az ST2-es kút mikroba közösségének feltárása 16S rDNS klónkönyvtárak segítségével

A talajvíz mikroba közösségének pontos faji összetételét, annak időbeli változását oly módon próbáltuk feltárnii, hogy 16S rDNS klónkönyvtáraikat hoztunk létre a kezdeti 2010. májusi, egy köztes 2010. decemberi, illetve a végponti, 2011. májusi minták esetében. Ehhez a mintákból RNS-t izoláltunk, amelyet reverz transzkriptáz enzim segítségével cDNS-sé, azaz komplementer DNA-sé írtunk át. Az így nyert közösségi cDNS-t templátként használva PCR segítségével felszaporítottuk a mikrobiális 16S rDNS szakaszokat, majd klónkönyvtáraikat hoztunk létre. Mindhárom klónkönyvtár esetében legalább 100-100 klónszekvenciát elemztünk. A klónkönyvtárak csoportreprezentánsainak filogenetikai besorolását, valamint abundanciájukat a 4.3-as ábrán és táblázatban foglaltuk össze.

4.1.2.1 A kiindulási, 2010. májusi minta mikroba közösségének összetétele

A összes klón 5%-a a Rhodocyclaceae családba tartozó Azoarcus PbN1-es törzzsel mutatott közeli rokonságot, a mikroorganizmust 1995-ben izolálta Rabus és Widdel. E törzs anaerob körülmények között képes az etil- és propil-benzol degradációjára, azonban toluol tartalmú táptalajon nem mutatott növekedést. Fontos megjegyezni, hogy e mikroszervezet aerob körülmények között nem volt képes az alkil-benzolok hasznosítására. A nemzetség egyes törzsei, ahogyan ezt a 2.8. fejezetben is bemutattam, gyakran fordulnak elő anaerob körülmények között, szénhidrogénekkel szennyezett talajvizekben, üledékekben. Anaerob közegben a nitrátot használják elektron akceptorként, azt nitrogén gázzá redukálva.

A Gammaproteobaktériumok Pseudomonas nemzetségéből detektált Pseudomonas extremiaustralis és Pseudomonas fluorescens fajokat (az összes klón 9 és 1%-a), mint tipikus BTEX-vegyületek biodegradációjára alkalmas mikroszervezeteket tartják számon. Szinte alig akad olyan szénhidrogénnel szennyezett kárhely, ahonnan a Pseudomonas nemzetség tagjait ne izolálnának (Hendrickx et al. 2005). A Pseudomonas extremiaustralis-t első ízben az Anktartiszról izolálták, azóta kiderült, hogy a típustörzs genomja számos különböző anyagsere útvonalat kódol a rideg környezetben való túlélés érdekében, beszámoltak biofilm képző tulajdonságáról, valamint aromás szénhidrogén bontó képességéről is (Tribelli et al. 2012). Egyes Pseudomonas fluorescens törzsek esetében ismert, hogy anaerob körülmények között is (a nitrátot elektron akceptorként használva) képesek lehetnek egyes aromás szénhidrogének bontására (Mikesell et al. 1993). A mintában kimutattunk az Alkanibacter difficilis mikroszervezettel csupán 95%-os hasonlóságot mutató klónokat, amelyek

4.1.2.2 A 2010. decemberi minta mikroba közösségének összetétele
A 2010. decembéri mintából kimutatott baktériumok 78%-a a Bétaproteobaktériumok, míg 18%-a a Gammaproteobaktériumok, valamint 3%-a a Delta- és 1%-a az Epsilonproteobaktériumok osztályába tartozott. Az Alfa-proteobaktériumok osztályát e mintában nem tudtuk kimutatni. A Béta-proteobaktérium klónok többsége, ellentéteben a májusban tapasztaltakkal, a Rhodocyclaceae családbá tartozott, de még mindig jelentős csoportot képviseltek a Comamonadaceae család tagjai is (4.3. ábra). A Rhodocyclaceae családból az Azoarcus PbN1-es törzssel nagy hasonlóságot mutató baktériumot már a kiindulási mintában (4.1.2.1. fejezet) is detektáltuk. 2010. májusban az összes klón csupán 5%-át alkotta e mikroszervezet, míg a decembéri mintában ez az arány már a közösségi dominanciát jelentő 39%-ra növekedett (4.3. táblázat). A nemzetségből egy további fajt, az Azoarcus buckellii-t is kimutattuk, ennél a mikroorganizmusnál is megfigyelték, hogy anaerob körülmények között is képesek az aromás szénhidrogének degradációjára (Widdel és Rabus 2001, Mechichi et al. 2002). A szintén Rhodocyclaceae családbá tartozó, az összes klón 6%-át alkotó Dechloromonas aromatica, ahogyan azt az irodalmi áttekintésben is írtam, oxigén hiányában, nitrátredukció mellett is képes a benzoil teljes lebontására, valamint a nitráton és oxigénen kívül klorát és perklorát iont is képes elektron akceptorként használni (Coates et al. 2001b). Oxigén vagy klorát jelenlétében valószínű, hogy dioxigenáz enzimek végzik az aromás gyűrű hasítását (Chakraborty et al. 2005).

A májusi mintában már kimutatott Epszilonproteobaktériumok közé tartozó anaerob *Sulfurospirillum multivorans* egyetlen egy klón eredetileg megjelent a decemberi mintánkban is.

A Deltaproteobaktériumokat képviselő klón legközelebbi ismert rokona a *Geobacter toluenoxydans*, olyan Fe(III)-redukáló baktérium, mely az általa hordozott benzil szukcinát szintáz funkciói révén jelentős szerepet játszik a toluol anaerob körülmények közötti lebontásában (Kunapuli et al. 2010).

Az egyedül ebben a mintában kimutatható Firmicutes osztályt a *Gama*pozitív Anaerovorax odorimutans-szal 86%-os hasonlóságot mutató klón képviselte. Ezen anaerob fermentatív metabolizmussal rendelkező mikroszervezetet anoxikus, enyhén sós víz üledékéből izolálták Matthies és munkatársai (2000), azonban az alacsony hasonlóság miatt az általunk kimutatott mikroorganizmus anyagcseréje ettől teljesen eltérhet.

4.1.2.3 A 2011. májusi mintha mikroba közösségének összetétele

A 2011. májusi mintából kimutatott baktériumok 90%-ban a Bétaproteobaktériumok közé tartoztak. Az előző klónkónyvtárakban 17–18%-ban jelenlévő Gammaproteobaktériumok osztályának teljes hiányát tapasztaltuk, ugyanakkor 10% gyakorisággal ismét megjelentek az Alfaproteobaktériumok. A Bétaproteobaktérium klónok többsége a Rhodocyclaceae családba tartozott, de még mindig jelentős csoportot képviseltek a Comamonadaceae család tagjai is (4.3. ábra és 4.3. táblázat).

A mintában domináns klón (az összes klón 37%-a) a szekvencia analízis során a Bétaproteobakériumok Rhodocyclaceae családjába tartozó *Ulignosibacterium gangwonense*-vel mutatja a legközelebbi rokonságot, azonban ez a 16S rDNS homológia nagyon alacsony 92,5 %-os értéket mutatott. Az *Ulignosibacterium* nemzetség aromás szénhidrogén degradáló képességéről nincsenek információink, azonban meg kell jegyezni, hogy a következő rokonfajok a *Thaueria* és *Zoogloeoa* nemzetségekbe tartoznak, ahol már ismerősénsen cseng ez a tulajdonság (Song et al. 2001). A kismértékű, hasonlóság miatt azonban az általunk detektált mikroba anyagcsere-képességeit illetően még becsülést sem bocsátókhozhatunk.

Az *Azoarcus* PbN1-el nagy hasonlóságot mutató mikroorganizmust az előző mintákhöz hasonlóan itt is sikerült kimutatnunk, azonban míg decemberben az összes klón 39%-át e
mikroba alkotta, öt hónappal később ez az arány csupán 3%-ra csökkent. A mintában sikerült detektálnunk a szintén nemzetségbeli *Azoarcus anaerobius* és *Azoarcus buckelii*, valamint egy a *Zoogloea* nemzetséggel legközelebbi (csupán 91,4%) rokonságot mutató baktériumfajt is.

4.3. táblázat. Az egyes klónok gyakorisága, filogenetikai besorolása, valamint *Rsa*I enzimmel végzett emésztés során kapott T-RF hosszak

<table>
<thead>
<tr>
<th>Filogenetikai besorolás</th>
<th>2010. május</th>
<th>2010. december</th>
<th>2011. május</th>
<th>becsült</th>
<th>mért</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bétaproteobaktériumok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodoferax spp.</td>
<td>70</td>
<td>75</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albidiferax spp.</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>433/477</td>
<td>429/472</td>
</tr>
<tr>
<td>Azoarcus spp.</td>
<td>5</td>
<td>45</td>
<td>16</td>
<td>120</td>
<td>119</td>
</tr>
<tr>
<td>ismeretlen Rhodocyclaceae</td>
<td>0</td>
<td>9</td>
<td>39</td>
<td>122</td>
<td>120</td>
</tr>
<tr>
<td>(Uliginosibacterium)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dechloromonas spp.</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>120</td>
<td>121</td>
</tr>
<tr>
<td>ismeretlen Rhodocyclaceae (Delfia)</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>120</td>
<td>117</td>
</tr>
<tr>
<td>Hydrogenophaga flavia</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>431</td>
<td>428</td>
</tr>
<tr>
<td>Acidovorax spp.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>431</td>
<td>428</td>
</tr>
<tr>
<td>Sulfuritalea spp.</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>120</td>
<td>118</td>
</tr>
<tr>
<td>Thiobacillus spp.</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>122</td>
<td>120</td>
</tr>
<tr>
<td>Sulfuricella spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>475</td>
<td>472</td>
</tr>
<tr>
<td>Gammaproteobaktériumok</td>
<td>18</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>10</td>
<td>17</td>
<td>0</td>
<td>521/472</td>
<td>522/472</td>
</tr>
<tr>
<td>ismeretlen Alkanibacter</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>462</td>
<td>457</td>
</tr>
<tr>
<td>Alfaproteobaktériumok</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium spp.</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>111/483</td>
<td>111/478</td>
</tr>
<tr>
<td>Oleomonas sagaranensis</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>120</td>
<td>119</td>
</tr>
<tr>
<td>Epsiliprotoebaktériumok</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfurospirillum multivorans</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>448</td>
<td>449</td>
</tr>
<tr>
<td>Deltaproteobaktériumok</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geobacter spp.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>243</td>
<td>243</td>
</tr>
<tr>
<td>Desulfopila spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>226</td>
<td>223</td>
</tr>
<tr>
<td>ismeretlen Desulfobacteraceae</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>258</td>
<td>258</td>
</tr>
<tr>
<td>Clostridia</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ismeretlen Clostridia (Anaerovorax)</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>492</td>
<td>490</td>
</tr>
<tr>
<td>Egyéb</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Comamonadaceae családot képviselő, decemberi klónkönyvtáról hiányzó *Rhodoferax antarcticus*-szal és *ferrireducens*-szel közel rokon faj ismét megjelent a mikroba közösségben, igaz közel sem olyan arányban, mint az egy évvel korábbi mintában. A mikroszervezet az összes
klón 5%-át alkotta. A szintén e családba sorolt, és a klónok 1%-át alkotó Hydrogenophaga flava mikroszervezetet Fahy és munkatársai kimutatták és izolálták egy a benzol bontására képes mikroba közösségből, kutatásuk szerint az általuk izolált törzs tisza tenyészetben is képes a benzol bontására (2006).

Az általunk ugyancsak kimutatott, az összes klón 5%-át alkotó, Alfa-proteobaktériumokhoz tartozó Oleomonas sagaranensis növekedést mutatott olyan aromás szénhidrogének jelenlétében, mint a benzol, toluol és fenol (Kanamori et al. 2002). Táncsics és munkatársai 2010-ben szintén kimutatták e mikroszervezetet szénhidrogénekkel szennyezett talajvízből (2010).

4.1.3 A klónkönyvtárak statisztikai elemzése, összehasonlítása

A klónkönyvtárak összetétele alapján jól látható, hogy néhány taxon állandó szereplője a közösségnek, így például az Azoarcus vagy a Rhodoferax nemzetség tagjai, bár gyakoriságuk változó képet mutat. Általánosságban elmondható, hogy mindhérom minta esetében a Bétaproteobaktériumok uralják a közösséget, azonban amíg a kiindulási minta esetében a Comamonadaceae család dominált, addig a 2010. decembersi, illetve a 2011. májusi minták a Rhodocyclaceae családban tartózkodott mikroszervezetek uralták.

A klónkönyvtárak UniFrac program segítségével végzett összehasonlítása is azt mutatja (4.4. ábra), hogy bár faji összetétel alapján mindhérom közösség szignifikánsan különbözik egymástól, a klaszter analízis szerint a 2010. decembersi és a 2011. májusi minták mikroba közössége között kisebb a különbség, köszönhetően annak a ténynek, hogy mindkét minta közösségét a Rhodocyclaceae család tagjai dominálták.

!4.4. ábra 16S rDNS klónkönyvtárak szignifikancia és klaszter elemzésének eredménye

4.1.4 A mikroba közösség dinamikájának vizsgálata T-RFLP segítségével

Amint azt fentebb már említettük, a Rhodocyclaceae családba több olyan nemzetség is tartozik, amelyről ismert, hogy oxigénlimitált, illetve anaerob közégekben nagy szerepet játszanak az aromás szénhidrogének lebontásában (pl. Azoarcus, Thauera, Dechloromonas nemzetségek).
4.5. ábra A minták 16S rDNS T-RFLP elektroferogramja Rsal enzimmel történt emésztés eredményeként, H': a Shannon diverzitás index értéke
Kérdés, hogy a dominanciaviszonyoknak ilyen szintű megváltozása, tehát a Comamonadaceae – Rhodocyclaceae átmenet mikor történt meg a vizsgált időperiódusban, illetve ez köthető-e valamilyen környezeti változóhoz. Ahhoz, hogy ezeket a kérdéseket megválaszoljuk, T-RFLP vizsgálat segítségével tártuk fel a közösség dinamikáját. A 13 hónapon át tartó T-RFLP monitoring eredményeként kapott kromatogramokat a 4.5. ábra szemlélheti. A T-RFLP elektroferogramok elemzése során szintén megfigyelhetjük a klónkönyvtárak értékelésénél kapott eredményt, miszerint a mikroba közösséget a monitoring teljes ideje alatt a Bétaproteobaktériumok uralták. Azon belül is a Rhodoferax (430 bp) és Azoarcus (119 bp) nemzetségek képviselői, valamint a Rhodocyclaceae család ezidáig ismeretlen tagja (120 bp) a domináns mikroszervezetek. A minták többségében ezenfelül a Gammaproteobaktériumok közé tartozó Pseudomonasok (522/472 bp) szintén nagy arányban voltak jelen. A klónkönyvtárak eredményei alapján feltételezett Comamonadaceae-Rhodocyclaceae dominanciaváltás, az elektroferogramokat elemezve sokkal árnyaltabb, a fent említett taxonok abundanciaja, akár hónapról-hónapra igén változó képet mutat. Az egyes aromás vegyületek koncentrációja, azok egymáshoz viszonyított aránya, valamint a talajvíz hőmérséklete és pH-ja sem változott jelentősen a monitoring ideje alatt. A légzési szubsztrátok szintjében és a redox potenciálban azonban lényeges változás volt megfigyelhető. A legkisebb oldott oxigén koncentráció 2010 augusztusában volt mérhető, közel anaerobá vált a közeg, miközben a nitrát és a szulfát koncentrációja a kimutatási határérték alá csökkent, valamint a redox potenciál is igen alacsony értéket (8mV) mutatott. Elképzelhető tehát, hogy e körülmények indukálták a közösség egyes dominanciaviszonyaiban bekövetkezett változásokat. Ahhoz azonban, hogy e feltételezésünk alá tudjuk támasztani, mikrokozmosz kísérletekre, vagy még gyakrabban végzett mintavételekre és nagyobb klónkönyvtárakra, esetleg megengedjen elemzésekre lenne szükség.

4.1.5 A szennyezés lebontásában szerepet játszó katekol 2,3-dioxigenáz funkciógének kimutatása

Mivel a mikroba közösséget olyan fajok uralták, amelyekről elsősorban az ismert, hogy anaerob úton bontják a BTEX-vegyületeket (pl. Azoarcus nemzetség képviselői), kérdéses volt az, hogy ebben az egyébként hipoxikus közegben aktívak-e az aerob lebontási útvonalak. Ez több szempontból is fontos kér dés, hiszen ismert, hogy az aromás szénhidrogének biodegradációja aerob körülmények között a leggyorsabb, ráadásul a benzol anaerob körülmények között perzisztens vegyületnek számít lassú biodegradációja miatt. Ahhoz, hogy ezt a kérdést megválaszoljuk, meg kellett vizsgálnunk az aerob lebomlási útvonalak kulcszerezeit kódoló gének aktivitását.

A 2010-es májusi minta esetében a fő szekvencia típus (61%, A klaszter) 98,8%-os hasonlóságot mutatott a P. putida MT15 C23O II proteini jóval. Ezt a C23O enzimet Keil és munkatársai (1985) írták le, mikor észrevettek, hogy a pWW15 TOL plazmidon két nem homoló, egymástól függetlenül szabályozott C23O gén kódolt. A második legabundancebb típus (15%, B klaszter) szintén a P. putida MT15 C23O II proteinijével mutatott rokonságot, azonban az egyezőség ez esetben már csak 91,4% volt. A C klaszterbe sorolt klónok (12%) a s67 D-Tn1 (GenBank azonosító szám: EU555077) metagenom klónnal mutattak 97,3 és 93,8% közötti hasonlóságot.

A 2010. decemberi minta esetében majdnem mindegyik típusú szekvenciát ki tudtuk mutatni, azonban azok gyakorisága megváltozott. Az A klaszter dominanciája megszűnt, csupán a minták 7%-a tartozott ide, míg a B típusú szekvenciák abundanciája 65%-ra növekedett. A C klaszter a minta 4%-át adta, míg a D típusú klónok gyakorisága megoduplázódott (20%). Ezen felül egy új szekvencia típus jelent meg (E klaszter, az összes klón 4%-a), mely szintén a korábban említett Pseudoxanthomonas spadix BD-a59 C23O szekvenciáival mutatott hasonlóságot, azonban csak jóval alacsonyabb 89,9%-os szinten.

A monitoring időszak végén a B klaszterbe sorolt klónok váltak dominánsára (85%), míg az E típusú szekvenciák gyakorisága 13%-ot tett ki. A C klaszter jelenléte tovább csökkent, 2011
májusában már csak a minta 2%-át alkották e klónok, továbbá az A és D klaszter klónjai teljesen hiányoztak.

Az I.2.B alcsaládhoz tartozó C23O génket nem sikerült egyik mintából sem kimutatni. E funkciógn jelenléte főleg a *Sphingomonas* fajokhoz köthető, melyeket a klónkönyvtárak segítségével sem sikerült kimutatmunk, ez nem meglepő, hiszen e fajok szigorúan aerob körülmények között fordulnak elő.

Az I.2.A alcsaládba tartozó katekol 2,3-dioxigenáz funkciógéneket a monitoring időszakban nem tudtuk minden mintából kimutatni, meg kell azonban jegyeznünk, hogy a PCR termékek pozitív esetben is gyengének mutatkoztak. Ahhoz, hogy az I.2.A alcsalád diverzitását feltárjuk, két klónkönyvtarot készítettünk a 2010. decemberi és a végponti, 2011. májusi mintákból. Az aminosav szekvenciák alapján a klónkönyvtárak összetételére meglepő módon mindkét esetben teljesen hasonlóan alakult (4.7. ábra). A domináns klónok (56-56%) 100%-os hasonlóságot mutattak a *P. putida* MT53 törzs TOL pWW53 plazmidján a xyleI funkciógén által kódolt C23O proteinnel. A minták további része (44-44%) szintén teljes egyezőséget mutatott a pWW53 plazmidon a xyleI gén és a pWW0 plazmidon a xylE gén által kódolt C23O enzimekkel. A diverzitásemző rarefaction analízis alapján a funkciógén klónkönyvtárak mintaszáma megfelelő volt mind a 3 típusú dioxigenáz funkciógén esetében.

Mivel az etil-benzol volt az egyik legfőbb szennyezőanyag az általunk vizsgált kárhelyen, ezért a Brennerova és munkatársai (2009) által leírt 3-izopropilkatekol (3-IPC) 2,3- dioxigenáz gének expresszióját is vizsgáltuk (3.11 fejezet alapján). A 3-izopropilkatekol 2,3-dioxigenáz funkciógén PCR-ek minden minta esetében erős pozitív terméket adtak. Az aminosav szekvenciák kiértékelése alapján a klónkönyvtárak diverzitása konstans alacsonyának mutatkozott (4.8. ábra). A domináns klónszekvenciák (92%, 96% és 100%-os arány a klónkönyvtárakban)
99,2%-os homológiait mutattak a *Pseudomonas* sp. JR1 törzs ipbC génjével (GenBank azonosítószám: U53507), amelyet Pflugmacher és munkatársai (1996) írtak le. A 2010. májusi és decembéri minták esetében a további szekvenciák 99,2%-os hasonlóságot mutattak az s179 (GenBank azonosítószám: EU884905) metagenom klónnal, melyet szintén Brennerova és munkatársai (2009) írtak le a már korábban említett csehországi légitámaszpontról.

4.1.5.1 Az I.2.C típusú C23O gének expressziójának monitorozása S NuPE módszerrel

4.9. ábra I.2.C alesaládba tartozó C23O gének aktivitása SNuPE elektroferogramok alapján

4.1.6 Összefüggések vizsgálata a mikrobaközösségi összetétele és az I.2.C alcsaládba tartozó C23O génnek expressziója között

Annak érdekében, hogy az expressziós mintázat és a bakteriális közösség változásai között összefüggéseket találjunk, elvégeztük a 16S rDNS T-RFLP és C23O SNuPE adatok klaszteranalízisét.

Azokban a hónapokban, melyek során a közösség összetétele nagyban megegyezett (4.10. a ábra), az I.2.C alcsaládba tartozó C23O funkció génnek expressziós mintázata szintén hasonlóan alakult (4.10. b ábra).

![4.10. ábra a 16S rDNS T-RFLP (a) és az I.2.C alcsaládba tartozó C23O SNuPE adatok (b) klaszteranalízise](image)

Ez a jelenség jól megfigyelhető a 2010. novemberi, decemberi és 2011. januári, továbbá a szeptemberi és az októberi minták esetében is. Ezzel szemben egyes hasonló funkció gén mintázattal rendelkező csoportok (pl. 2010. június, július és augusztus) nagyon elkülönültek a közösségi összetételük illetően. Hogy a T-RF-ek és az I.2.C alcsaládba tartozó C23O klaszterek közötti összefüggéseket meghatározhassek, főkomponens analízist végeztünk el (4.11.)
ábra). Az analízis során szignifikáns korrelációt (0.0284) találtunk a C klaszter és a *Rhodoferax* klónokhoz köthető 430-bp T-RF jelenléte, illetve abundanciája között. A B és az E klaszterek pedig ez eddig ismeretlen *Rhodocyclaceae* klónokhoz köthető 120-bp T-RF-el mutattak szoros kapcsolatot (0.0256 és 0.0409 szignifikancia). Sajnos a másik három funkciógén típus aktivitása (A, D és F klaszterek) nem mutatott összefüggést a bakteriális közösség egyik tagjával sem.

4.11. ábra Összefüggések az I.2.C típusú C23O gének expressziója és a mikrobközösség összetétele között.

4.1.7 Diszkusszió

A Rhodocyclaceae családba tartozó Azoarcus klónok legtöbbje 100%-os 16S rRNS gén hasonlóságot mutattat a nitrátredukáló körülmények között etil- és a propil-benzol bontására képes Azoarcus sp. PbN1-el, ahogy ezt egy korábbi vizsgálatunkban is tapasztaltuk (Táncsics et al. 2012). A szintén Rhodocyclaceae családbá sorolt és a monitoring időszak végén dominánssá váló klón az Uliginosibacterium nemzetséggel mutatta a legnagyobb hasonlóságot. Továbbá e klónok azonosak voltak számos környezeti szekvenciával, mint például a Casper kárhelyen (WY, USA) Callaghan és munkatársai által (2010), vagy a Düsseldorf-Flingern területen (Németország) Pilloni és munkatársai által kimutatott szekvenciákkal (2011).

A Bétaproteobaktériumok után a második legnagyobbs csoportot a Gammaproteobaktériumok alkották, azon belül is főként a Pseudomonas nemzetség tagjai. A leggyakoribb Pseudomonas klónok 100% hasonlóságot mutattak az Arktiszról izolált P. extremiaustralis baktériummal, melynek kimutatták biofilm képző, valamint aromás szénhidrogén bontó képességét is (Tribelli et al. 2012.). A többi Proteobaktérium osztály nem volt egyik mintában sem meghatározó számban jelen.

A meta gyűrűhasítási útvonal dioxigenáz génjeinek átíródását monitorozva azt tapasztaltuk, hogy az I.2.C C23O és 3-IPC 2,3-dioxigenáz génének expressziója folyamatos volt. Az újonnal tervezett XYLE3 nevű degenerált primer szett (a tervezési folyamat a 3.11-es fejezetben) az I.2.C alcsaládba tartozó C23O gének széles skáláját volt képes amplifikálni a PCR során, még ezidáig ismeretlen, kitenyésztt baktériumokhoz nem köthető típusokat is. Az eredményeink alapján a Brennerova és munkatársai (2009) által leírt 3-IPC 2,3-dioxigenáz génnek is széleskörűen elterjedtek a BTEX-vegyületekkel szennyezett talajvízeken. Ezenfelül, tudtunk szerint ez volt az első alkalom, hogy e funkcióknak mRNS transzkriptomait kimutatták környezeti mintákból.

nem csak az enzim koszubsztrátja, de annak expresszióját is szabályozza. Ezek alapján érdekes lenne megvizsgálni, hogy van-e különbség nem homológ C23O funkciógének expressziójában mikroaerob körülmények között.

Mivel az I.2.C alcsaládba tartozó C23O gének nagy diverzitását és eltérő expresszióját tapasztaltuk a klónkönyvtárak alapján, SNUPE próbákat (az egyes próbákat lásd a 8.2. mellékletben) tervezünk az egyes klaszterekre, hogy a gének átíródását feltárhassuk az egész monitoring időszak alatt. A B és C klaszter aktivitása folyamatosan kimutatható volt, így ezen C23O gének és az általuk kódolt enzimek szerepe a BTEX-vegyületek lebontásában valószínűsíthető. Eredményeink alapján a B klaszter jelenléte valószínűleg a Rhodocyclaceae családba tartozó ezidáig ismeretlen baktériumhoz, míg a C klaszteré a szintén ismeretlen *Rhodoferax* (Comamonadaceae) fajhoz köthető. Ugyanakkor az egyértelműen *Pseudomonas*-okhoz köthető A klaszter nem mutatott szignifikáns korrelációt a közösség egy tagjával sem. E korreláció hiánya abból adódhat, hogy legalább két T-RF csúcs is a *Pseudomonas* nemzetség fajaihoz köthető.

Új tudományos eredmény az 4.1-es fejezet alapján: Az újonnan tervezett XYLE3 nevű degenerált primer szett az I.2.C alcsaládba tartozó C23O gének széles skáláját volt képes amplifikálni a PCR során, még ezidáig ismeretlen, kitenyészett baktériumokhoz nem köthető típusokat is.

Az eredményeinket a *Systematic and Applied Microbiology* szakfolyóiratban publikáltuk (Táncsics et al. 2013).
4.2 A siklósi mikrobaközösség stabil izotópos toluol lebontó vizsgálata hipoxikus körülmények között

4.2.1 A stabil izotópos dúsítás körülményei

A siklósi mintaterület ST2-es kútjából 2015 áprilisában vettünk üledékben gazdag talajvíz mintát a korábban ismertetett módon. A kísérlet során összesen 15 darab három-három párhuzamos mikrokozmoszt állítottunk be 100 ml-es szérumüvegekben. 5-5 g nedves tömegű homogén üledékhez 50 ml nátrium-hidrogénkarbonát alapú mesterséges talajvíz tápoldatot mértünk, melyet vitamin és ásványi tápanyag törzsoldatokkal egészítettünk ki (a tápoldat részletes leírását lásd a 8.3.1 mellékletben). A mikrokozmoszokból az oxigént N₂/CO₂ 80:20 térfogat arányú gázkeverékekkel hajtottuk ki, majd 0,2 μm pórúsátmérőjű szűrőn keresztül levegőt juttatva a rendszerekbe 0,5 mg/l-re állítottuk be azok oxigénkoncentrációját. A mikroorganizmusok által elhasznált oxigént napi rendszerességgel pótoltuk, annak koncentrációját nem invazív módon, az üvegekbe ragasztott lumineszcens spotok, Fibox 3 Oxygen Meter műszer, valamint OxyView-PST3-V7.01 szoftver (PreSens, Németország) segítségével detektáltuk.

Hat-hat mikrokozmoszhoz 5 μl jelöletlen (12C₇), illetve minden szénatomon izotóposan jelölt (13C₇) toluolt adtunk. További három mikrokozmoszhoz, melyek autoklávozás után abiotikus kontrollként szolgáltak szintén 5 μl jelöletlen toluolt mértünk. Hogy a baktériumok aktivitását növeljük, az üvegekbe 5 mM ciklikus adenoszín monofoszfátot (cAMP) adtunk. Az így elkészített mikrokozmoszokat 16°C hőmérsékleten 145 rpm rázatás mellett inkubáltuk. Az aromás
szénhidrogén fogyását a gáztérből ISQ Single Quadrupole GC-MS műszerrel (ThermoFischer Scientific), SLB-5ms kapillárist alkalmazva (Supleco Analytical) detektáltuk. A műszert 3 perces 40 °C indulási hőmérsékletét percenként 20 °C-al növeltük 190 °C-ig, a tömeg spektrométert (MS) 250 °C full scan módban üzemeltettük.

4.2.2 A toluol fogyása a mikrokozmoszokban, valamint az egyes DNS frakciók elkülönítése

Ahogy azt vártuk, a toluol gyors biodegradációja volt megfigyelhető a biotikus mikrokozmoszokban, a harmadik napon a hozzáadott mennyiségnek már csak 30%-át detektáltuk (4.12. ábra). Ekkor, hogy elkerüljük a másodlagos metabolitokkal táplálkozó mikroorganizmusok felszaporodását három-három jelölt és jelölentlen toluolt tartalmazó mikrokozmoszból DNS-t izoláltunk. A hetedik napon már egyáltalán nem tudtunk mérhető mennyiséget kimutatni, míg ezzel párhuzamatosan az abiotikus kontrollokban mért veszteség elenyésző volt. Ekkor a maradék dúsító tenyészeteit DNS-ét is kinyertük. Az egy hétig inkubált dúsító tenyészeteit összesen ~7,8 mL oxigennel látott el az inkubáció alatt, mivel a sztöchiometriai számítások alapján a kozmoszokhoz adott 4,7 x 10⁻⁵ mol toluol aerob lebontásához (~1 mM koncentráció) 3,1 x 10⁻⁴ mol oxigén szükséges. Ez az oxigén mennyiség az egyetemes gáztorvényn szerint 25°C-on 7,5 mL oxigén gáznak felel meg. Számításaink helyességét igazolta az is, hogy a kísérlet végén az oxigén fogyása nagymértékben lelassult és a 6. napon hozzáadott mennyiség jelentős hányadát 24 órával később is ki tudtuk mutatni a mikrokozmoszokból. A dúsító tenyészeteit mikrobaközösségét 16S rDNS T-RFLP módszerrel elemeztük és azt tapasztaltuk, hogy a párhuzamos mikrokozmoszok elektroferogramjai szinte tökéletesen megegyeznek. A nagymértékű hasonlóság miatt az ultracentrifugálást csak egy harmadik napi és egy hetedik napi jelölődött minta esetében végeztük el. A cézium-kloridos gradiensből a 3.13-fejezet alapján visszaizolált „nehéz” és „könnyű” DNS frakciók egyértelműen elkülöníthetőek voltak (4.13. ábra), továbbá köztes frakciókat is meg tudtunk különböztetni.
4.2.3 A mikrobaközösség diverzitása

4.14. ábra A 16S rDNS T-RFLP elektroferogramok (RsaI enzim) diagram alapú ábrázolása a 3-10 frakciók esetében- a piroszekvenálásra kiválasztott frakciókat a nyílak jelöli
4.4. táblázat A 16S rRNS amplikon piroszekvenálás során kapott eredmények

![Table](image)

Az eredmények alapján a nehéz frakció 117 bp hosszúságú T-RF-je *Quatrionicoccus* nemzetséghez köthető, míg a 119 bp és 475 bp-os fragmentek a Rhodocyclaceae család ezeddig
ismeretlen tagjához (*Uliginosibacterium gangwonense* 92%-os homológia), valamint *Zoogolea* fajokhoz tartoznak.

A köztes frakcióban zömében szintén Bétaproteobaktériumokhoz köthető 16S rDNS szekvenciákat figyeltünk meg, melyeknek többsége a Rhodocyclaceae családhoz tartozott, azonban itt már magas számú Comamonadaceae szekvenciát is detektáltunk. E szekvenciák döntő százalékban egy ez idáig ismeretlen általunk korábban is kimutatott *Rhodoferax* baktériumhoz köthetőek.

A könnyű frakcióban a Bétaproteobaktérium rokon mikroszervezetek aránya lecsökkent, noha még mindig a Rhodocyclaceae család dominanciája volt kimutatható, azonban ezt már nem a *Quatrionicoccus*, hanem az *Azoarcus* nemzetség tagjai okozták (117 bp hosszúságú fragmentek), míg a 242 bp és 306 bp-os T-RF-ek a *Geobacter* nemzetség és a *Bacteroidetes* törzs egyes tagjaihoz köthetőek. Az *Aeromonas* és *Pseudomonas* (Gamma proteobaktériumok), valamint az *Arcobacter* nemzetséghez és a Sulfurospirillum (Epszilon proteobaktériumok) családhoz, köthető szekvenciákat is főként e frakcióból tudtuk kimutatni.

4.2.4 Az I.2.C típusú C23O dioxigenázok kimutatása a SIP frakciókból

Annak ellenére, hogy az I.2.C típusú C23O dioxigenázok diverzitását kutatócsoportunk már több ízben is vizsgálta a siklói kárhelyen, számos genotípust még nem tudtunk ismert baktériumfajhoz kötni. Ezért a SIP vizsgálatok során T-RFLP vizsgálattal igyekeztünk feltárni e funkciógének diverzitását az egyes DNS frakciókban. A nehéz és köztes frakciók esetén a katekol dioxigenáz funkciógének mintázata nagyon hasonlóan alakult. A 333 bp és 806 bp hosszúságú fragmentek mindkét mintavételi időpontban dominánsnak mutatkoztak. A 157 bp és 469 bp hosszúságú T-RF-ek kisebb arányban voltak jelen, az utóbbi a könnyű frakcióból teljesen hiányzott. A könnyű frakcióban a 802 bp méretű volt a domináns T-RF, továbbá a 778 bp, 101 bp és 446 bp hosszúságú T-RF-eket is csak innen tudtuk kimutatni (4.15. ábra).
Hogy az egyes T-RF-eket azonosíthassuk klónkönyvtárakat készíttetünk a kiindulási mintából, valamint a harmadik napi mintavétel könnyű és nehéz frakcióiból. A nehéz frakcióban domináns 333 bp méretű 1.2 C típusú C23O fragment egyértelműen az általunk egy BTEX-vegyületekkel szennyezett kárhelyről izolált és leírt Zoogloea oleivorans fajhoz köthető, az új baktériumfajt a 4.4. fejezetben részletesen fogom bemutatni.

4.15. ábra Az I.2.C típusú C23O T-RFLP diagramjai az egyes frakciókban és mintavételi időpontokban
4.16. ábra Az I.2.C típusú C23O diverzitása a kiindulási mintában, valamint a 3 napos könnyű és nehéz frakciókban neighbor-jointing módszer alapján. A jelen vizsgálatban kimutatott klónokat félkövér betűtípussal jelöltük, a nevekben az egyes T-RF hosszakat is megjelenítettük. A nehéz frakció genotípusait szürke háttérrel emeltük ki.
4.2.5 Diszkusszió

Noha a siklósi kárhely baktériumközösségét és az I.2.C alcsaládba tartozó katekol 2,3-dioxigenáz funkciógének diverzitását már több esetben is megpróbáltuk feltárni (Táncsics et al. 2012, 2013), a degradációban való részvételük még továbbra is kérdéses volt számunkra. Hogy minden kétegyet kizáróan igazolhassuk az egyes funkciógének, valamint baktériumfajok aktivitását oxigénlimitált körülmények között, stabil izotópos toluol bontási kísérletet állítottunk össze. A mikrokozmoszok közösségét két időpontban vizsgálva a 16S rDNS amplikon piroszekvenálás a Rhodocyclaceae családbá tartozó baktériumok dominanciáját mutatta ki a nehéz frakciókban. Elsősorban egy *Quatrionicoccus* rokon baktériumfajt azonosítottunk, mint legfőbb mikroaerob toluol lebontó mikroszervezetet (65%-a a jelölődött frakcióknak). A nemzetségben egyetlen baktériumfajt találhatunk, a szigorúan aerob, Gram-negatív coccus *Q. australiensist*, melyet egy eleveniszapos szennyvíztisztító rendszerből izoláltak. Sajnos a típuszörs szénhidrogén bontó képességéről nincsenek információk, valamint a leíróktól és az általuk megjelölt törzsövényekből a faj nem beszerezhető. A szerzők által ismertetett táptalajon megpróbáltak a törzset izolálni, azonban ezidáig nem jártunk sikerrel (Maszenan 2002). A két legközelebbi nemzetség a *Ferrribacterium* és a *Dechloromonas*, az utóbbiban találhatjuk a széleskörűen kutatott *Dechloromonas aromatica* mikroorganizmust, amely dioxigenáz enzim (nem I.2.C típusú) és részleteiben még nem ismert anaerob útvonalakon számos elektron akceptor (nitrát, klorát, perklorát) jelenlétebben képes az aromás szénhidrogének bontására (Salinero et al. 2009).

Egy ezidáig ismeretlen *Rhodocyclaceae* rokon baktériumot szintén magas arányban tudtunk kimutatni a nehéz frakcióból. E faj a legközelebbi rokonságot (~93%-os 16S rDNS hasonlóság) *Uliginosibacterium gangwonense*-vel mutatta és úgy tűnik széleskörűen elterjedt a
szénhidrogénekkel szennyezett felszín alatti közegekben. A mikroorganizmus jelenlétét az egy éves monitoring időszak alatt is kimutattuk (domináns volt a 2011., májusi mintában) és statisztikai elemzéseink alapján valószínűsíttetük, hogy rendelkezhet I.2.C típusú katekol 2,3-dioxigenázzal. Az, hogy ez a funkciógén genotípus (B klaszter) jelen dúsításunk során a második legabundánsabbnak mutatkozott (806 bp) a nehéz DNS frakcióban szintén alátámasztja korábbi feltevésünket. Természetesen tiszta tenyészetek hiányában sajnos még mindig fenntartásokkal kell kezeli ezen összefüggéseket.

Szintén meglepő módon a jelöletlen frakcióban detektáltuk a *Pseudoxanthomonas spadix* baktériumfajt és a hozzá köthető katekol dioxigenáz géneket, e mikroorganizmus genomjában három különböző I.2. C típusú C23O funkciógén is kódolt.

A könnyű DNS frakciókban leginkább domináns katekol 2,3-dioxigenáz genotípus (802 bp T-RF) a legnagyobb hasonlóságot egy Brennerova és munkatársai (2009) által kimutatott
metagenomklónnal mutatta. A kutatásuk során megállapították, hogy a funkciógén által kódolt enzim a toluol aerob degradációja során keletkező 3-metilkatekol köztitermékének bontásában játszik szerepet. Ennek ellenére az ezt a típust hordozó baktérium nem vett rész a mikrokozmoszainkban a toluol biodegradációjában. Ennek egy magyarázata lehet, hogy esetleg ezen ismeretlen baktériumok oxigénlimitált körülmények között inkább nitrátot használnak elektron akceptorként és a minimális mennyiségű oxigént csak a gyűrű hasításához használják fel (Wilson et al. 1997). Mivel a mikrokozmoszokhoz nem adtunk nitrátot és a vizsgált talajvíz alapvetően nitrátszegény volt, ezért az ilyen módon metabolizáló baktériumok inaktívak maradhattak a kísérlet alatt. Eredményeink alapján ez a genotípus a kiindulási és a könnyű DNS frakciók mintáiban volt jelentős, mely összefüggésbe hozható a szintén e mintákban hasonló abundanciát mutató *Azoarcus* fajokkal. Jelenleg is folyik az ezt a kérdést megválaszolni hivatott anaerob toluol-lebontási dúsító kísérletem.

Új tudományos eredmény az 4.2-es fejezet alapján: Stabil izotópos kísérletekkel igazoltuk, hogy az egyes *Quatrionicoccus* és *Zoogloea* nemzetségebe, valamint a korábbi eredményeink alapján is feltételezett ismeretlen, Rhodocyclaceae családba tartozó baktériumfajok részt vesznek a toluol oxigénlimitált körülmények közötti biodegradációjában. A *Quatrionicoccus* nemzetség esetében mi mutattunk rá először annak aromás szénhidrogén bontó képességére. Az eredményeink publikálása folyamatban van.

4.3 Vasredukáló mikroorganizmusok dúsítása a siklósi, BTEX-vegyületekkel szennyezett kárhelyről

Ahogy az előző fejezetekben bemutattuk, a siklói kárhely monitoringja során a szennyezési csóvában többek között egy, a *Rhodoferax* nemzetséghez köthető, feltételezően fakultatív anaerob baktérium változó dominanciáját tudtuk kimutatni. A hosszútávú monitoring során végzett statisztikai elemzések alapján e mikroszervezet szerepet játszhat a BTEX-vegyületek lebontásában (Táncsics et al. 2013), azonban a stabil izotópos kísérlet eredményei nem feltétlenül támasztják alá ezt a lehetőséget. Ezen felül a folyamatos monitoring tevékenység során 2013-tól a területen a *Geobacter* nemzetség jelenlétét is detektáltuk. Az utóbbi nemzetség tagjai jól ismertek urán(VI) és vas(III)-redukáló képességükkről (Shelobolina et al. 2008) illetve arról, hogy szerves vegyületek oxidálása során grafit elektródot is tudnak elektron akceptorként hasznosítani (Bond et al. 2002, Bond és Lovley 2003). Jelenlegi ismeretek szerint a nemzetség tagjai jelentős szerepet tölthetnek be a monoaromás szénhidrogének biodegradációjában vasredukáló körülmények között (Kunapuli 2010). Lényegesen kevesebb tudunk a hasonló
környezeti feltételek mellett szintén sokszor kimutatható *Rhodoferax*-ronok fajok ökológiai szerepérről. Ez részben annak is köszönhető, hogy a genusz mindössze négy valid fajt hordoz magában (Kaden et al. 2014). E mikroorganizmusok tulajdonságai meglehetősen változatosak, megtalálunk köztük fototrófokat, anaerob fermentálókat, aerob kemoorganotrófokat és vasredukáló baktériumokat egyaránt. Urániummal és/vagy szénhidrogénekkel szennyezett felszín alatti közégekben a *Rhodoferax ferrireducing* és *Rhodoferax antarcticus* fajok vagy azokkal közel rokon fajok ökológiai szerepére is feltehető, hogy a genusz mindössze négy valid fajt hordoz magában (Kaden et al. 2014). E mikroorganizmusok tulajdonságai meglehetősen változatosak, melyek közé tartoznak fototrófok, anaerob fermentálók, aerob kemoorganotrófok és vasredukáló baktériumok, beleértve azokkal közel rokon fajok is. 4.3.1 A mikrokozmosz kísérlet körülményei

A kiindulási talajvíz mintát a már előzőekben bemutatott siklósi terület ST2-es kútjából vettük, mely a szennyezési csővá középpontjában helyezkedik el. A talajvíz mintákat steril 1 literes szérumüvegekbe (Glasgeratebau Ochs) töltöttük gáztér nélkül, hogy elkerüljük az oxigénszint növekedését. Az üvegeket butilgumi dugóval és fémgyűrükkel hermetikusan lezártuk és sötétben 15°C-on 2 hétig inkubáltuk, hogy a nitrát fogyását elősegítsük a dúsító tenyészetek előkészítése előtt.

Mivel az elsődleges cél a *Rhodoferax* nemzetség egyes fajainak feldúsítása volt, ezért alapvetően a bifid nemkén baktériumok izolálására használt szakmai útmutatásokat próbáltuk követni. A dúsító tenyészetekhez Fahy és munkatársai (2006) által kidolgozott minimál ásványi tápoldatot alkalmaztunk kisebb módosításokkal. A tápoldathoz szénforrásként sterilre szűrt acetátot adtunk. Madigan és munkatársai (2000) azt tapasztalták, hogy kis mennyiségű élesztő jelenléte serkentheti egyes *Rhodoferax* fajok felszaporodását, ezért alapvetően a fix nitrogénforrást (NH$_4^+$) is tartalmaztunk a tápoldatunk. Továbbá a magnézium forrást MgSO$_4$ helyett MgCl$_2$ hozzáadásával biztosítottuk, hogy elkerüljük a szulfátredukáló baktériumok esetleges feldúsulását. Mivel a *R. ferrireducing* és *R. antarcticus* szüksége van tiaminra (B$_1$ vitamin) valamint biotinra (B$_7$ vitamin) a megfelelő növekedéshez (Finneran et al. 2003, Madigan et al. 2000), 1 mg/l tiamint és 15 μg/l biotin valamint továbbá 20 μg/l B$_{12}$ vitaminot adtunk a dúsító tenyészetekhez.

A fentieknek megfelelően négy különböző foszfát puffer alapú tápoldatot állítottunk össze eltérő nitrogénforrással. A táplevesek összetétele a következő volt: I. típusúban 0,05% (w/v) élesztőkivonatot és NH$_4$Cl-ot (1 g/L) alkalmaztunk; II. típusúban kizárólag élesztőkivonatot; a III. típusúban kizárólag NH$_4$Cl-ot, míg a IV. típusúban hiányzott mind az élesztőkivonat mind a fix nitrogén forma. A tápoldatok alapjait képző oldatokat 121°C-on, 15 percen át autoklávban
sterileztük. Ezt követően szürve adtuk a B₁, B₁₂ vitaminokat, a biotint és az ásványi anyag komplexet a tápoldatkohoz (a táptalaj pontos összetételét a 8.3.2 számú mellékletben részleteztem).

A tápoldatokat 100 ml-es szérumüvegekbe, 50 ml-enként szétosztottuk, majd butil-gumidugóval és alumínium záró kupakkal légmentesen lezártuk. Az anaerob környezetet az oxigén 8-10 perces nitrogéngázzal való kihajtásával teremtettük meg. Az így előkészített mikrokozmoszokba oltottunk 1-1 ml-t a talajvízből, majd 5 mM Fe(III)NTA (nitrilo-triecetsav-vas(III)) komplexet adtunk hozzá, biztosítva a szükséges elektron akceptor megfelelő koncentrációját. Ezután egyhetes, 16°C-on történő rázásmentes inkubáció következett, mely alatt a vasredukáló baktériumok felszaporodhattak. A dúsító tenyészeteket öt héten keresztül hetente átoltottuk, a baktériumokkal teli tápoldatokat minden esetben lecentrifugáltuk és DNS-t izoláltunk belőlük. A dúsító tenyészetek mikroba közösségének heti dinamikáját T-RFLP módszerrel, FspBI enzim segítségével (C↓TAG) követettük nyomon. A kiindulási minta, valamint az ötödik heti dúsító tenyészetek bakterilálás diverzitását 16S rRNA klónkönyvtárakkal (~50-50 klón) tártuk fel. Hogy az egyes baktériumcsoportok jelenléte és a tápoldatok összetétele közötti összefüggéseket megismerjük, kanonikus korrelációelemzést végeztünk. Korábbi eredményeink alapján a feldúsítani kívánt Rhodoferax rokon mikroszervezetek rendelkezhetnek I.2.C típusú katekol 2,3-dioxigenáz (C23O) funkciógénekkel. A szintén vasredukáló Geobacter nemzetség egyes fajai hordozhatnának benzil szukcinát szintáz (bss) funkciógént (Kunapuli et al. 2010). E funkciógének jelenlétéit a 3.11-es fejezetben ismertetett módszerrel detektáltuk. Hogy pontosabb képet kapjunk a kiindulási minta mikroba közösségéről, azt Ion Torrent PGM platformon (Life Technologies) történő shotgun metagenom szekvenálás segítségével is vizsgáltuk. A metagenom analízis során 221267 db, átlagosan 203 nukleotid

4.3.2 A kiindulási minta bakteriális diverzitása
Az eredmények alapján elmondhatjuk, hogy a kiindulási minta igen diverz képet mutatott.
A mikrobaközösséget a Bétaproteobaktériumok dominálták (47%), őket követték a Gamma-proteobaktériumok (20%), Delta-proteobaktériumok (7%), Alfa-proteobaktériumok (4%), Clostridiák (2%) és végül a Bacteroidiák (1%).
A legnagyobb számban a Dechloromonas (18%) nemzetség képviselői voltak jelen, ezt követték a Pseudomonas (12%), Acidovorax (4%), Geobacter (3%), "Aromatoleum" (3%), Burkholderia (2%), Thauera (2%), Polaromonas (2%), Azotobacter (2%), Rhodoferax (1%) és az Azoarcus (1%) nemzetségek képviselői (4.18. ábra).
A metagenomikai vizsgálat során nemzetség szinten természetesen nem sikerült minden csoportot azonosítani, a szekvenciák 11%-a ismeretlen eredetűnek adódott. Az eredeti talajvizmintából készített klónkönyvtár eredményei összecsengenek a metagenom analízisbelül, mivel a klónok többsége a Bétaproteobaktériumok osztályába (69%) tartozott, azon belül pedig legfőként a Rhodocyclaceae és a Comamonadaceae családokba (4.5. táblázat). Ugyanakkor a legtöbb klónt a Quatriconicoccus nemzetségből tudtuk kimutatni, ellenben a metagenom elemzés során tapasztalt Dechloromonas-szal. Ez az ellentmondás azzal magyarázható, hogy ezek a nemzetségek nagyon közeli rokonságban álnak a Rhodocyclaceae családon belül, így a Sanger-féle szekvenálás során kapott hosszabb szekvenciák alapján pontosabb képet kaphattunk a taxonómiai hovatartozásról.
Hasonlóan a metagenom adatokhoz, a klónkönyvtárban is kimutattuk az általunk felülsítani kívánt Geobacter és Rhodoferax, továbbá a Pseudomonas, "Aromatoleum" / Azoarcus és Acidovorax nemzetségek jelenlétéit.

4.18. ábra A kiindulási minta metagenom analízise 221267 db, átlagosan 203 nukleotid hosszúságú DNS szekvencia alapján
4.3.3 A dúsítást követő mikrobiális diverzitás

4.5. táblázat Az egyes klónok gyakorisága, filogenetikai besorolása, valamint *FspBI* enzimmel végzett emésztés során kapott T-RF hosszak

<table>
<thead>
<tr>
<th>Filogenetikai besorolás</th>
<th>Kiindulási minta</th>
<th>Dúsító tenyészetek</th>
<th>T-RF hossz (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I.</td>
<td>II.</td>
</tr>
<tr>
<td>Béta-proteobaktériumok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quatrionicoccus spp.</td>
<td>66</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Azoarcus spp.</td>
<td>8</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Rhodoferax spp.</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acidovorax spp.</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brachymonas spp.</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gamma-proteobaktériumok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrobacter spp.</td>
<td>16</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>0</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>Delta-proteobaktériumok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geobacter spp.</td>
<td>4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Desulfobulbus spp.</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Negativicutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veillonellaceae spp.</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacilli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus spp.</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clostridia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium spp.</td>
<td>0</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>Cytophagia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meniscus spp.</td>
<td>2</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Bacteroidia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides spp.</td>
<td>0</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Sunxiuqinia spp.</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Synergistia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloacibacillus spp.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Egyéb</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

NM - nem meghatározott
nemzetség egyes tagjainak (236 bp-os T-RF) gyakorisága szintén csökkent az I. és a II. típusú dúsítás esetében, míg a III. és a IV. típusú dúsításban e fajok teljesen eltűntek. A 111 bp-os Pseudomonas-okhoz köthető T-RF kisebb mértékben, de továbbra is minden esetben kimutatható maradt.

A legfontosabb különbség a két típusú dúsítás bakteriális közössége között az, hogy míg a 85 bp-os T-RF domináns volt az I. típusú dúsításban, a II. típusúból teljesen hiányzott. A 16S klóncsoportok alapján ez a T-RF a Geobacter nemzetséghez köthető. A klón a III. típusú dúsításban szintén domináns volt és a legközelebbi rokona a G. lovleyi, amellyel csupán 95% szekvencia hasonlóságot mutat. Érdekes módon, egy másik, 122 bp hosszú T-RF a III. típusú dúsítóból szintén egy Geobacter rel rokon szekvenciát mutat. A klónok a G. metallireducens-re hasonlítanak a legjobban, de az egyezőség csak 96,3%-os.

A III. típusú dúsítás a Geobacter-rokon baktériumok túlsúlya, és a Citrobacter- vagy Clostridium-szerű klókon teljes hiánya miatt a CCA diagramon teljesen elszeparálva jelenik meg (4.20. ábra). A Geobacter nemzetség dominanciája feltételezhetően a fix nitrogén (ammónium-klorid) forrásnak volt köszönhető.

A IV-es típusú dúsítás esetében csak egyetlen domináns T-RF volt megfigyelhető (254 bp T-RF) (4.19. ábra). A 16S klónkönyvtár elemzésével kiderült, hogy ez a T-RF is a Geobacter nemzetséghez köthető. A legközelebbi rokona a G. luticola, mely a 16S rDNS szekvenciában 97,5% hasonlóságot mutat. Ennek a baktériumnak a feldúsulása a nitrogénkötő körülményekhez köthető, mivel a IV. típusú dúsításban csak a gáznemű N₂ volt az egyetlen nitrogénforrás.
4.19. ábra A kiindulási és a dúsító tenyészetek 16S rDNS T-RFLP elektroferogramjai FspBI enzimmel történt emésztés eredményeként, H': a Shannon diverzitás index értéke

A Geobacter fajokról ismert, hogy ammónium hiányában általában képesek a nitrogénfixációra (Zhuang et al. 2011). Elemezve a rendelkezésre álló genom szekvenciákat nyilvánvaló vált, hogy a nitrogenáz gének széles körben elterjedtek a Geobacter fajokban. Azonban a nitrogenáz gének jelenléte nem szükségszerűen igaz minden Geobacter-re, például a Geobacter soli GSS01T nemrégiben feltárt genomszekvenciája (Yang et al. 2015) is hiánj van az adott funkció gének. Ezért a Geobacter fajok differenciális dúsítására az egyik lehetséges magyarázat az, hogy az I. és III. típusú dúsításban domináns Geobacter baktérium nem volt képes megkötni a nitrogént. Másrészt ez még mindig nem magyarázat arra, hogy a IV. típusú dúsításban túlsúlyban lévő Geobacter baktérium miért hiányzott az ammónium klór dúsításokból.
Köztudott ugyanakkor, hogy a legkisebb környezeti változtatások is különböző szervezetek dominanciájához vezethetnek (Zhuang et al. 2011). Nemrégen a „subsurface 1”-es kládba tartozó *Geobacter bemidjiensis* genomszekvenciáját öss zehasonlitották más, nem „subsurface 1” kládba tartozó *Geobacter*-ekével és nagymértékű metabolikus, valamint fiziológiai eltéréseket találtak (Aklujkar et al. 2010). A kutatásunk eredményei közelebbi rokonok esetében is feltételezik az esetleges nagyfokú különbségeket.

Elemezve a négy dúsítás baktérium közösségeit sajnos nyilvánvalóvá vált, hogy az alkalmazott dúsítási feltételek nem voltak alkalmasak arra, hogy a *Rhodoferax*-szal rokon baktériumokat feldúsítsuk.

Meg kell jegyeznünk, hogy a *Pseudomonas* nemzetség tagjai (111-bp T-RF a elektroferogramokon), továbbá valószínűleg egy ismeretlen *Azoarcus*-okkal távoli rokon baktérium (232 bp hosszúságú T-RF) minden esetben kimutatható volt a dúsításokban.

4.3.4 A I.2.C típusú C23O és bssA gének detektálása és diverzitása

Egyértelműen a Geobacter-ekhez köthető bssA géneket nem lehetett kimutatni a kiindulási mintákban. Meglepő módon a 3-as OTU-ba tartozó szekvenciák (19%-a a klónoknak) nagyon alacsony hasonlóságot mutattak az eddig ismert szekvenciákkal. A legközelebbi rokonto egy környezeti klónból származó klon ("Testfeld süd", Németország, 83.3% hasonlóság) jelentette.

A dúsított tenyészetekben jelentősen csökkent a bssA diverzitása a kezdeti talajvíz mintákhoz képest. Mi több, a tenyészetekből detektált bssA szekvenciák nem egyeztek meg egyik kiindulási mintában lévő egyik szekvencia típussal sem. Az összes típusú dúsításban ugyanaz a bssA genotípus volt domináns, és egy környezeti klonnal ("Testfeld Süd", Németországi
szénhidrogénekkel szennyezett kárhely) mutatta a legnagyobb, 89,1%-os szekvenciáhasonlóságot, továbbá 88,7%-ban egyezett az "Aromatoleum aromaticum" EbN1 funkciógnévével.

A 16S rDNS adatokból valamit a funkciógnél kölönövőtőrak eredményeiből arra következtethetünk, hogy az összes dúsításban jelenleg még ismeretlen, valószínűleg Fe(III)-redukáló, az Azoarcus-szal távoli rokonságban álló, bssA gént hordozó baktériumok voltak jelen. Bár a Geobacter fajok domináltak az I., III. és IV. típusú dúsításokban, a Geobacter nemzetséghez köthető bssA géneket ezekből a baktérium közösségekből sem tudtunk kimutatni.

4.3.5 Diszkusszió

A siklósi kárhelyen végzett metagenom analízis során a szennyezési csóva mikrobaközösségében jelentős Geobacter és Rhodoferax populációt figyeltünk meg. A kiindulási mintákban ezentúl a benzil szukcinát szintáz funkciógének nagy diverzitását is kimutattuk. A bssA szekvenciák döntő hányada a Bétaproteobaktériumokhoz volt köthető, míg meglepő módon a Deltaproteobaktérium (Geobacter) eredetű klaszterek hiányoztak. Noha a négy különböző dúsító tenyészset egyikében sem sikerült a Rhodoferax-ronkon és más I.2.C-típusú C23O funkciógnénnel rendelkező mikroorganizmusok felszaporítása, három esetben Geobacter nemzetség tagjai váltak dominánsá. Sőt, a különböző nitrogénforrások más-más Geobacter-filotípusok felszaporodását eredményezték, azonban továbbra is csak Bétaproteobaktériumokhoz, feltehetően az Azoarcus-okkal távoli rokonságban álló baktériumokhoz köthető bssA szekvenciákat azonosítottunk mindegyik tenyészsetben. Ezen eredményeink alapján valószínűsíthető, hogy a siklósi kárhely Geobacter populációja nem játszik szignifikáns szerepet a toluol anaerob biodegradációjában.

Új tudományos eredmény az 4.3-as fejezet alapján: Sikerült olyan dúsítási körülményeket létrehoznunk, melyek alkalmasak voltak az általunk vizsgált közegből különböző Geobacter fajok felhúzására. Igazoltuk, hogy a Geobacter populáció nem játszik szignifikáns szerepet a siklósi kárhelyen a toluol anaerob biodegradációjában.

Eredményeinket a nemzetközi Folia Microbiologica folyóiratban adtuk közre (Farkas et al. 2017).
4.4 Az új baktériumfaj - Zoogloea oleivorans sp nov. leírásának bemutatása

A doktori munkám során a kísérleti mintákból és egyéb kárhelyekről is folyamatosan próbáltunk olyan baktériumtörszeket izolálni, amelyek rendelkeznek a BTEX-vegyületek hipoxikus bontásáért felelős enzimekkel. Egy esetben sikerült egy ezidáig ismeretlen Zoogloea nemzetségbe tartozó baktériumfajt izolálnunk, mely rendelkezik a I.2.C alcsaládbá tartozó katekol 2,3 dioxygenáz enzimtípussal. A Zoogloea nemzetség tagjait elsősorban szennyvíztisztítók eleveniszapjából izolálták. Pehelyképző tulajdonságainak köszönhetően szennyvízkezelés során szemcsés szerkezetű üledéket képeznek, ez a sajátság előnyös a fonalas szerkezetet kialakító baktériumokkal szemben (Shao et al. 2009, Weissbrodt et al. 2013, Zhao et al. 2013). A sejt aggregátumok kocsonyás állagú, úgynevezett zoogloea mátrixba ágyazottak (Dugan et al. 1992), ami jó alapját képzi a mikrobiális biofilm kialakulásának. Ez idáig a Zoogloea nemzetségen belül négy fajt írtak le: a Zoogloea caeni-t (Shao et al. 2009), a Zoogloea ramigera-t (Crabtree és McCoy 1967), Zoogloea resiniphila-t (Mohn et al. 1999) és a Zoogloea oryzae-t (Xie és Yokota, 2006). A szennyvíztisztítási folyamatokon túl a mikrobiális biofilmek kulcsszerepet játszhatnak a szennyezett területek bioremediációjában (Pastorella et al. 2012), így nem meglepő, hogy a Zoogloea genusszal közeli rokon mikroszervezetek körében a közelmúltban benzolbontó fajokat is kimutattak (Jechalke et al. 2013). Az új fajt is egy a szénhidrogén szennyezést eltávolító biofilteren kialakult biofilmből izoláltuk. A biofilmből hígítási sorokat készítettünk 0.9 % (w/v) sóoldattal, majd a hígítási tagokból 100-100 µl-ért R2A agar lemezekre szélesztettünk (DSM medium No. 830, lásd 3.15-ös fejezet). Öt napig tartó, 28 °C-on történő inkubációt követően a különböző morfológiájú telepeket izoláltuk és azokat újabb 5 napig inkubáltuk. Az izolátumok közül az egyik baktériumtörsz alacsony 16S rDNS hasonlóságot mutatott a legközelebbi Zoogloea rokon fajokkal, ezért esetében elvégeztük az új faj leírásához szükséges vizsgálatokat.

![3.22. ábra A Buc² törzs elektromikroszkópos képe. A képen jól megfigyelhető a sejtkeket körülvevő, kevésbé elektrondenz vastag tok, valamint a poláris flagellum.](image)
A „Buc” laborjelzésű törzs 5 és 35 °C, valamint 6 és 9 pH között mutatott növekedést, a tenyészhőmérséklet optimumát 25-30 °C között, pH optimumát 6,5-7,5 pH között határoztuk meg. Az R2A agaron a telepek a törzs által termelt zoogloea mátrixnak köszönhetően néhány nap alatt viaszos állagot vették fel, tápoldatban pedig szabad szemmel is látható pelyhek képződtek. A 1,2-1,4 μm széles és 2,5-3 μm hosszú, pálca alakú sejteket vastag tok veszi körül. A sejtek Gram-negatívan festődnek és aktív helyváltoztatásra képesek, amihez poláris flagellummal rendelkeznek (4.22. ábra).

A törzs a nitrátot nitrité redukálja, de nitrogén gáz képződése nem volt kimutatható. Anaerob növekedést az R2A tápoldatokban (rözsletes leírás a 4.15.3. pontban) 7 napos 28 °C-on történő inkubáció alatt csak nitrát jelenlétében figyeltünk meg. Az acetátot és a legtöbb szénhidrátot (API 20 NE, API 50 CH) a törzs nem tudja egyedüli szénforrásként hasznosítani.

4.6. táblázat Zoogloea nemzetségre jellemző egyes fenotípusos jellegek

<table>
<thead>
<tr>
<th>Sejt átmérő μm</th>
<th>Z. oleivorans Buc^T</th>
<th>Z. caeni EMB43^T</th>
<th>Z. resinipila Dha-35^T</th>
<th>Z. oryzae A-7^T</th>
<th>Z. ramigera ATCC 19544^T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2-1.4</td>
<td>0.6-0.9</td>
<td>0.5-0.7</td>
<td>1.0</td>
<td>1.0-1.2</td>
</tr>
<tr>
<td>Telepek színe</td>
<td>szürkésfehér</td>
<td>sárgásfehér</td>
<td>fehér</td>
<td>színtelen</td>
<td>szürkésfehér</td>
</tr>
<tr>
<td>37°C-on való növekedés</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>45°C-on való növekedés</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N\textsubscript{2} történő denitrifikáció</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kataláz</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ureáz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denitrifikáció</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zsélatin hidrolízise</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Kazein hidrolízise</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Acetát hasznosítás</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Citrát hasznosítás</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Glükóz hasznosítás</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol hasznosítás</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>G+C (mol%)</td>
<td>63.2</td>
<td>64.9</td>
<td>n.i.</td>
<td>65.1</td>
<td>65.3</td>
</tr>
</tbody>
</table>

A Zoogloea nemzetségre jellemző egyes fenotípusos jellegeket az 4.6. táblázatban foglaltuk össze. Annak ellenére, hogy a Buc^T jelzésű törzs és a Z. oryzae A-7^T sok metabolikus hasonlóságot mutat, hőmérsékleti optimumukban, telepmorfológiájukban különbözik, továbbá az Z. oryzae a nitrát nitrogén gázzá történő redukciójára is képes (4.6 táblázat).
Az új faj nitrogénfixációs képességét a *nifH* gén molekuláris biológiai vizsgálatával mutattuk ki. A PCR során a PolF, 5‘-TGGCAYCCSAARGCBGACTC-3’ forward és PolR, 5‘-ATSGCCATCATYTCRCCGGA-3‘ reverse primereket alkalmaztuk (Poly et al., 2001), pozitív kontrollként a *Z. caeni* EMB43T törzsből izolált DNS-t használtuk. Mindkét esetben a várt 340 bp hosszúságú PCR terméket detektáltuk.

Mivel az új fajt szénhidrogénekkel szennyezett kárhelyről izoláltuk kiváncsiak voltunk annak biodegradációs képességére. A BucT és a *Z. caeni* EMB43T törzek szénhidrogén bontó képességét OIR III tápoldattal (lásd 3.15.7 fejezet) vizsgáltuk. A méréseket háromszoros ismétlésben végeztük. A 120 órás rázatás során a BucT törzs a kőolaj-gázolaj keverék 18.6±1.6%-át volt képes bontani a vizsgált idő alatt, míg a közeli rokon Z. caeni EMB43T törzsénél nem figyeltünk meg degradációs képességet.

A BucT törzs sejtmembránja hasonlóan a nemzettség többi fajához főként C₁₆:₀, C₁₀:₀ 3-OH, C₁₂:₀ és 3 (C₁₆:₁₀:₀ 7c és/vagy iso-C₁₅:₀ 2- OH) zsírsavakat tartalmaz. A legfőbb kimutatott légzési kinon az ubikinon-8 (Q-8), valamint az ubikinon-7 (Q-7) is detektálható volt kis százalékban. A poláris lipid vizsgálatok alapján a fő komponens a foszfatidil-ethanolamin. A törzs DNS-ének G+C tartalma 63.2 mol%-nak adódott. A kemotaxonómiai adatokról összehasonlítást az EzTaxon server online felületén (http://www.ezbiocloud.net/eztaxon, Kim et al. 2012) és a FASTA3 programot használtuk (http://www.ebi.ac.uk/fasta33/nucleotide.html). A szekvencia hasonlósági értékeket meghatározásához a BucT törzs és a rokon fajok között a FASTA3 programot használtuk (http://www.ebi.ac.uk/fasta33/nucleotide.html). Az új faj rendszertani elhelyezéséhez filogenetikai törzsfát szerkesztem a MEGA 5.0 szoftver (Tamura et al. 2011) segítségével. A törzsfa megalkotásához mind a távolság-alapú neighbor-joining (Saitou és Nei 1987) és karakter-
alapú maximum-likelihood (Felsenstein 1981), valamint a maximum-parszimónia (Kimura 1980) módszereket alkalmaztak, a fa topológiája mindhárom esetben hasonlóan alakult. A kapott fa topológiájának és távolságértékeinek pontosságát 1000 ismétlésen alapuló bootstrap analízissel vizsgáltuk (4.23. ábra).

A 16S rRNS gén szekvencia analízise alapján a Buc\(^T\) a legnagyobb, 97,2%-os homológiát a Z. caeni EMB43\(^T\) típustörzzsel mutatta, majd ezt követte a Z. oryzae A-7\(^T\), Z. ramigera ATCC 19544\(^T\) és végül a Z. resiniphila DhA-35\(^T\) 95,9; 95,5 és 95,4 %-os egyezőséggel. A DNS-DNS hibridizáció mértéke a Buc\(^T\) és a Z. caeni EMB43\(^T\) törzsek között 31,6 %-al alakult, mely egyértelműen a külön fajba sorolhatósághoz megállapított 70%-os határ alatt található (Wayne et al. 1987). A fiziológiai, biokémiai és filogenetikai eredmények alapján az általunk izolált törzs új fajnak tekinthető, melynek végül a Zoogloea oleivorans nevet adtuk.

Új tudományos eredmény a 4.4-es fejezet alapján: Sikerült egy ezidáig ismeretlen Zoogloea baktériumfajt izolálnunk, mely rendelkezik az I.2.C alcsaládba tartozó katek 2,3 dioxygenáz enzimtípussal. Elvégeztük az új faj nemzetközi követelményeknek megfelelő leírását, mely során a mikroorganizmusnak a Zoogloea oleivorans nevet adtuk.

Az eredményeink az International Journal of Systematic and Evolutionary Microbiology szakfolyóiratban jelentettek meg (Farkas et al. 2015).
5. Következtetések

A siklósi, BTEX-vegyületekkel szennyezett, oxidén limitált kárhelyet vizsgálva nyilvánvalóvá vált számunkra, hogy a Bétaproteobaktériumok, azon belül is elsősorban a Zoogloea-, Quatrimonococcus-, Rhodoferax-nemzetségbe és egy ezidáig kitenyésztett, Rhodocyclaceae családába tartozó mikroorganizmusok lehetnek a domináns mikroaerob BTEX lebontó szervezetek. Egy általunk izolált, a kárhelyen is fellelhető új Zoogloea fajról bebizonyítottuk, hogy rendelkezik I.2.C típusú katekol 2,3 dioxigenáz funkciógénnel. Az ilyen típusú funkciógének által kódolt enzimek a szakirodalmi adatok alapján megnövekedett oxigén affinitással rendelkeznek, így nagy biodegradációs szerep juthat az őket hordozó baktériumoknak a hipoxikus közegekben. Vizsgálataink során ezt megerősítve számos I.2.C alcsaládba tartozó C23O genotípust tudtunk kimutatni a szennyezési csővából, továbbá kettőt közülük sikerült statisztikai módszerekkel az ismeretlen Rhodocyclaceae és a Rhodoferax rokon mikroorganizmusokhoz kötnünk. Azonban ahhoz, hogy kétséget kizáróan eldönthessük, hogy e funkciógéneket mely fajok hordozzák, szükséges azok kitenyésztése. A Rhodoferax nemzetség esetében erre próbát is tettünk. Nehezítette törekvésünket, hogy a genuszban található mikroorganizmusok tulajdonságai meglehetősen változatosak, megtalálunk közük fototrófokat, anaerob fermentálókat, aerob kemoorganotrófokat és vasredukáló baktériumokat egyaránt. Mi alapvetően az ismeretlen mikroorganizmus vasredukáló képességét feltételezünk, azonban az izolálás sikertelen volt. A továbbiakban megpróbálunk a nemzetség fototróf tulajdonságát kihasználva új dúsítási technikát fejleszteni. Az I.2.C alcsaládba tartozó funkciógéneket monitorozva azt is tapasztaltuk, hogy a stabil izotópos kísérlet során az egyes genotípusok (pl. Pseudoxanthomonas spadix-hoz köthető C23O) a hipoxikus körülmények ellenére inaktívak maradtak. Ennek egy magyarázata lehet, hogy az ilyen genotípusokat hordozó baktériumok oxidén limitált körülmények között inkább nitrátot használnak elektron akceptorként és a minimális mennyiségű oxigént csak a gyűrű hasításához használják fel. Tovább árnyalja a képet azonban az, hogy a Pseudoxantomonas spadix-hoz tartozó genotípus aktivitását, ha kis arányban is, de a hosszútávú monitoring alatt ki tudtuk mutatni. Az I.2.C típusú genotípusok szerepe sem egyértelmű a hipoxikus közegekben. Sok esetben a közösségben igen jelentős arányban (~10%) voltak jelen e baktériumok és a 2010. májusi-júniusi mintákban a hozzájuk köthető C23O funkciógének aktivitását is ki tudtuk mutatni, azonban a stabil izotópos kísérletek során a genusz tagjainak DNS-ét a könnyű frakcióban detektáltuk. Igaz, ebben az esetben a nemzetséghez köthető I.2.C típusú katekol 2,3 dioxigenáz genotípusokat sem tudtunk kimutatni. Látható tehát, hogy az I.2. C
típusú katekol 2,3-dioxigenázok megléte szükségesnek tűnik a BTEX-vegyületek mikroaerob lebontásában, azonban az enzim és az őt hordozó baktérium szerepvállalása az adott közösségben számos más környezeti tényezőtől is függ.
6. Összefoglalás

Annak ellenére, hogy a BTEX-vegyületek aerob és anaerob körülmények közti biodegradációja széleskörűen kutatott, a hipoxikus közegekben lejátszódó lebontási folyamatokról igen kevés információ áll a rendelkezésünkre. Mivel a mélyen fekvő talaj illetve talajvíztáblák oldott oxigén koncentrációja legtöbb esetben alacsony, szükségszerű azon mikroba közösségek vizsgálata, melyek anyagcsere-útvonalaik a hipoxikus körülményekhez adaptálódtak.

Eredményeink alapján az általunk feltárt talajvizet mindvégig a Bétaproteobaktériumok Comamonadaceae és Rhodocyclaceae családai, azon belül is elsősorban a Rhodoferax, Azoarcus, Zoogloea, Quatrrionicoccus és egy ismeretlen, a Rhodocyclaceae családba tartozó genusz tagjai dominálták. A Gammaproteobaktériumokhoz tartozó Pseudomonas és a Deltaproteobaktériumokhoz tartozó Geobacter nemzetségek tagjait is jelentős számban detektáltuk az egyes mintákban.

Vizsgálataink alapján a fent említett genuszok közül a BTEX-vegyületek hipoxikus lebontásában a Zoogloea, Quatrrionicoccus és az ismeretlen Rhodocyclaceae mikroorganizmus minden kétséget kizáróan nagy szerepet játszik. A Zoogoea nemzetségből sikerült is izolálnunk és leírmunk egy a tudomány számára ezidáig ismeretlen mikroorganizmust, mely rendelkezik a BTEX-vegyületek mikroaerob lebontását lehetővé tevő enzimtipussal. A Rhodoferax család képviselőjének szerepvállalása eredményeink és a nemzetközi irodalom alapján sem egyértelmű, ám valószínűsíthető, hogy e mikroorganizmus is szerepet játszik a toluol, vagy egyes metabolitjainak mikroaerob lebontásában.

A Pseudomonas fajok a vizsgált időszak kezdetén aktívnak mutatkoztak, majd a későbbiekben passzivitásukat meglepve tapasztaltuk, hiszen számos fajukról közismert, hogy igen jó arányban képesek a szénhidrogének degradációjára. Másrészről a nemzetséghez köthető I.2.C típusú katekol 2,3 dioxigenáz genotípust, mely lehetővé tette volna számukra a toluol hipoxikus lebontását, a stabil izotópos vizsgálatok során már nem tudtuk kimutatni a mintákból.

Az Azoarcus fajok hipoxikus körülmények között inaktívak maradtak, ismerve a szakirodalomi adatokat ez egy várt jelenség volt, hiszen e mikroorganizmusok biodegradációs szerepe főleg nitrátreduktáló körülmények között igazolt. E baktériumok kárhelyen betöltött szerepét tisztázzandó nitrátreduktáló toluol-lebontási kísérleten jelenleg is zajlik. A szakirodalom alapján a Geobacter nemzetség egyes fajai az állalak hordozott benzil szukcinát szintáz funkciójének révén nagy szerepet töltenek be a BTEX-vegyületek anaerob lebontásában. Kutatásunk alapján azonban valószínűsíthető, hogy a siklósi kárhely Geobacter populációja nem játszik szignifikáns szerepet a toluol anaerob biodegradációjában.
7. Summary

Despite the fact that the aerobic and anaerobic degradation of BTEX compounds have been widely studied little is known about these processes under microaerobic conditions. Since the availability of oxygen is often limited in contaminated soil and groundwater ecosystem, investigation of functional diversity of bacterial communities adapted to the microaerobic conditions is required. It was demonstrated that the bacterial community at the investigated site was dominated mainly by Betaproteobacteria, such as members of the genera Rhodoferax, Azoarcus, Zoogloea, Quatrionicoccus and unknown bacteria related to Rhodocyclaceae. The Gammaproteobacteria related Pseudomonas and Deltaproteobacteria related Geobacter genera were also detectable.

In summary, results of studies clearly revealed the central role of Zoogloea, Quatrionicoccus and unknown Rhodocyclaceae bacteria in hypoxic toluene degradation at the contaminant plume. Furthermore we isolated and describe a novel Zoogloea species which possess subfamily I.2.C catechol 2,3-dioxygenases gene, which could have enabled this bacteria to take part in the degradation of toluene under hypoxic conditions.

According to our result and the available literature the role of Rhodoferax bacteria in microaerobic degradation of toluene, or its metabolites is still unclear. The Pseudomonas species were active only at the beginning of the monitoring period. During the stable isotope experiment the inactivity of these species can be surprising due to the fact that it is widely known that several members of the genus are capable of degrading aromatic hydrocarbons. On the other hand, Pseudomonas-affiliated subfamily I.2.C-type C23O genes were absent from the community at this time.

As it was expected the Azoarcus and Geobacter species remained inactive in hypoxic conditions. The former species are usually reported as excellent toluene degraders under nitrate reducing conditions. Accordingly nitrate reducer toluene degrading microcosms had been set up to clarify the role of these bacteria in Siklós aquifer, however the results still need to be evaluated.

Numerous studies have suggested that Geobacter species take an important part in the anaerobic removal of BTEX hydrocarbons. According to the results, it is highly assumed that although a notable Geobacter population can be observed at the Siklós BTEX contaminated site, these bacteria may not play significant role in the anaerobic degradation of toluene.
8. Mellékletek

8.1 Irodalomjegyzék

150. Mechichi T., Stackebrandt E., Gad'on N., Fuchs G. (2002): Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of *Thauera phenylacetica* sp. nov., *Thauera aminoaromatica* sp. nov., and *Azoarcus buckelii* sp. nov. *Archives of Microbiology*, 178, 26-35.

162. M-VGT 2009- Vízgyűjtő gazdálkodási terv

173. Országos Környezeti Kármentesítési Program 2005-ös jelentése

strain that possess higher specificities for chlorinated metabolites. *Journal of Bacteriology* 185, 1253-60.

Internetes hivatkozások

8.2 Az éves monitoring során tervezett SNuPe primerek

<table>
<thead>
<tr>
<th>cél</th>
<th>primer szekvencia</th>
<th>vártt termék hossza (bp)</th>
<th>detektált hossz (bp)</th>
<th>beépülő bázis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A klaszter</td>
<td>5’ CTT GAT CAC ATT GCA</td>
<td>22</td>
<td>28</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>CTT GTA 3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B klaszter</td>
<td>5’ (T)_3 CGG CAT CAA GAC</td>
<td>25</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>AGA CCT GCT 3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C klaszter</td>
<td>5’ (T)_6 CAT AGA GGC CTA</td>
<td>28</td>
<td>32</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>CGG TAT CGC 3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D klaszter</td>
<td>5’ (T)_9 GTT GGC CGC ATG</td>
<td>31</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>CTG AAA TTT 3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E klaszter</td>
<td>5’ (T)_{12} CAG GCC GCC ACA</td>
<td>34</td>
<td>38</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>TGG CTG ACA 3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F klaszter</td>
<td>5’ (T)_{15} TGG CCA AGA ACC</td>
<td>37</td>
<td>40</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>GCA CCC GCA 3’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3 A kísérletek során használt speciális táptalajok

8.3.1 A stabil izotópos dúsításnál használt tápoldat összetétele
A SIP kísérlet során használt tápoldat az alábbi összetevőkből áll:
20 ml anaerob médium: 1 literre; 50 g NaCl, 20 g MgCl₂ x 6H₂O, 10 g KH₂PO₄, 12.5 g NH₄Cl, 25 g KCl.
30ml NaHCO₃ (1M) puffer: 1 literre 84 g NaHCO₃
1ml vitamin oldat: 200 ml-re: 10 mg-10 mg B₁₂, B₁₀, B₁, 2 mg B₇, 20 mg nikotin, 50 mg B₆ és 5 mg B₅,
2ml szeleni-volfrám oldat: 1 literre: 0,5g NaOH, 3g Na₂SeO₃ x 5 H₂O, 4mg Na₂WO₄ x 2H₂O
2 ml ásványi tápanyag oldat 1 literre: 10.00 ml HCl (25%; 7,7M), 1,5 g FeCl₂ x 4 H₂O, 70 mg ZnCl₂, 100 mg MnCl₂ x 4 H₂O, 36 mg H₃BO, 190 mg CoCl₂ x 6 H₂O, 2mg CuCl₂ x 2 H₂O, 24 mg NiCl₂ x 6 H₂O, 36 mg Na₂MoO₄ x 2 H₂O
1 ml 10mM cAMP oldat
8.3.2 A vasredukáló mikroorganizmusok dúsítására használt tápoldatok összetétele

A tápoldat összetétele alapesetben: 0,55 g K₂HPO₄; 0,125 g KH₂PO₄; 0,5 g NH₄Cl; 0,25 g élesztőkivonat; 450 ml desztillált víz. Az elegyet 121°C-on, 15 percen át autoklávban sterileztük.

A tápleveshez ezután 0,2 µm-es pórusátmérőjű fecskenőszűrőn keresztül vagy 0,05 g CaCl₂x2H₂O és 0,2 g MgCl₂ 50 ml-es vizes oldatát adtuk.

A baktériumok megfelelő növekedése érdekében az 500 mL térfogatú elegyekhez vitaminokat: 0,5 ml B₁(1 mg/ml), 5 µl B₁₂ (2 mg/ml), 5 µl biotin (1,5 ng/ml) és 0,5 ml ásványi anyag komplexet kevertünk.

Az ásványi anyag komplex összetétele: 14 g FeCl₂x4H₂O; 0,1 g ZnCl₂; 0,015 g H₃Bo₃; 0,175g CoCl₂ x 6H₂O; 0,15g Na₂MoO₄ x 2H₂O; 0,02g MnCl₂ x 4H₂O; 0,01g NiCl₂x6H₂O; 1000 ml dH₂O.

A szénforrásként használt acetát oldat összetétele: 0,415 g C₂H₃NaO₂ 5 ml dH₂O, melyet szűrve adtunk a tápoldathoz.

FeNTA(nitrilotriecetsav) elkészítése:

100 mM-os oldat: 1,64 g NaHCO₃-ot feloldunk 80 ml vízben, majd hozzáadunk 2,56 g nitrilotriecetsav-trinátriumsót és 2,7 g FeCl₃ x 6H₂O-t.

Az oldatot filteren keresztül sterilizáljuk, majd nitrogéngázzal kihajtjuk belőle az oxigént.
9. Köszönetnyilvánítás

Ezúton szeretném megköszönni Dr. Táncsics András és Dr. Szoboszlay Sándor konzulenseimnek a rengeteg segítséget, tanácsot és támogatást melyekkel segítették szakmai fejlődésemet, bővítették tudásom és formálták szemléletem.

Dr. Kriszt Balázs intézetigazgatójának, hogy lehetővé tette a munkák megvalósulását.

Dr. Benedek Tibornak hálás vagyok, hogy részt vállalt a kísérletek elkészítésében és kiértékelésében. Köszönöm Dr. Tillmann Lüdersnek valamint Szalay Annának, hogy megismertettek a stabil izotópos vizsgálatok kivitelezésével. Köszönettel tartozom Dr. Tóth Erikának és munkatársainak az új faj leírásában nyújtott segítségért, valamint Dr. Szabó Lászlónak a fáziskontraszt-mikroszkóppal és transzmissziós elektronmikroszkóppal történt vizsgálatokért.

Köszönöm továbbá a Regionális Egyetemi Tudásközpont és a Környezetbiztonsági és Környezettoxikológiai Tanszék minden dolgozójának, akik nélkül dolgozatom nem jöhetett volna létre.

Végül családomnak, és barátaimnak szeretném köszönnetet mondani a türelemért, és a bátorításért, ami végig segített a doktori munkám során, és a dolgozatom elkészítésekor.

A munkát az OTKA PD 104307 és TÉT 12 DE-1-2013-0007 pályázatok segítették.