MIKROSPÓRA EREDETŰ NÖVÉNYEK ÉS SZOMATIKUS HIBRIDEK ELŐÁLLÍTÁSA KUKORICA GENOTÍPUSOKBÓL

PhD értekezés
Irta: Szarka Béla

Készült: Gabonatermesztési Kutató Kht.

Témavezető: Dr. Mórocz Sándor

Gödöllő, 2002
TARTALOMJEGYZÉK

1. RÖVIDÍTÉSEK JEGYZÉKE ... 3

2. BEVEZETÉS .. 4

3. IRODALMI ÁTTEKINTÉS ... 7

3.1. Haploid növények, mikrospóraindukció ..7

3.2. Szomatikus hibridizáció ..14

4. ANYAG ÉS MÓDSZER ... 17

4.1. Mikrospóra eredetű növények előállítása.. 17

4.1.1. Donor növények.. 17

4.1.2. Mikrospóra izolálás és tenyésztés ... 17

4.1.3. Növénnyregenerálás ... 18

4.1.4. A táptalajok hatása a mikrospórák éleképességére.. 18

4.1.5. Statisztikai értékelés ... 19

4.1.6. Oldatok, táptalajok ... 20

4.2. Kukorica x búza szomatikus hibridizáció ... 22

4.2.1. Protoplaszt donor növények .. 22

4.2.2. Szuszpenziós tenyészetek ... 22

4.2.3. Növénynevelés .. 22

4.2.4. Protoplaszt izolálás ... 22

4.2.5. Kukorica és búza protoplasztok fúziója .. 23

4.2.6. A szomatikus híbridek azonosítása ... 23

4.2.7. In situ hibridizáció ... 24

5. EREDMÉNYEK, ... 25

5.1. Mikrospóra eredetű növények előállítása... 25

5.1.1. Mikrospóra izolálás és tenyésztés ... 25

5.1.2. Regenerálóképes, fenntartható tenyészetek létrehozása PH TC mikrospórákból 25

5.1.3. Termékeny mikrospóra növények és az utódnemzedék ..26

5.1.4. A táptalaj módosítások hatása a mikrospórák életképességére 26

5.2. Kukorica x búza szomatikus hibridizáció ... 30

5.2.1. Protoplasztok izolálása, fúziója, tenyésztése .. 30

5.2.2. Zöld növények regenerációja .. 30

5.2.3. A feltételezett híbrid tenyészetek vizsgálata.. 30

5.3. Új tudományos eredmények ... 31

6. KÖVETKEZTETÉSEK ÉS JAVASLATOK.. 34
6.1. Kukorica mikrospóra tenyésztés, és haploid növények előállítása ..34
6.2. Kukorica szomatikus hibridizáció ...38
7. ÖSSZEFOGLALÁS .. 41
8. MELLÉKLETEK .. 42
 M1. Irodalomjegyzék ..42
9. KÖSZÖNETNYILVÁNÍTÁS ... 53
1. RÖVIDÍTÉSEK JEGYZÉKE

DH doubled haploid, dihaploid
FDA fluorescens diacetát
ISO isolation solution, mikrospóra izoláló oldat
LGT low gelling temperature (agaróz), alacsony olvadáspontú agaróz
MH SC mikrospóra eredetű hibrid (kétvonalas) single cross
mN6M módosított N6M táptalaj
mYP módosított Yu Pei táptalaj
PEG polietilén glikol
PH TC portok hibrid three way cross, háromvonalas portok eredetű hibrid
ppN6M/89 N6M protoplaszt táptalaj
RAPD Randomly Amplified Polimorphic DNA
2. BEZEZTÉS

A növénynemesítést segítő módszerek köre számos új eszközzel bővült a növényi szövetek és sejtek in vitro tenyészthetőségének kidolgozása révén. A szomatikus hibridizáció és a haploid növények előállítási eljárásai különösen jól hasznosíthatónak bizonyultak, és kiemelkedő gyakorlati szerepet játszottak a szövettenyészési módszerek között.

Egyes növényfajok esetében a transzgénés és mikrospóra módszerrel előállított fajták, hibridek is a gyakorlati nemesítés részévé váltak napjainkra.

Az említett eljárások kulcsa minden esetben a növényi élet in vitro fenntarthatósága, melyre a növények mind fajonként, mind genotípusonként nagyon különböző mértékben alkalmazak. Általánosságban elmondható, hogy a jó szövettenyészési és agronómiai értékek ritkán járnak együtt. Gyakorlati szempontból fontos, hogy a szövettenyészet károsodás nélkül, hosszabb ideig fenntartható, és termékeny növények regenerálására alkalmas legyen. Egyedi génkonstrukciók bejuttatásához elegendő egy-egy transzformációra alkalmas genotípus, melyből visszakeresztezéssel (backcrossing) a célfajtába, vagy beltenyészett vonalba juttatható a gén. Az in vitro haploid eljárásoknál vagy szomatikus hibridizációról azonban nem kerülhet meg magának a cél-genotípusnak a szövettenyészthetősége. Ez utóbbi területeken tehát a gyakorlati alkalmazás a mai napig is genotípusos korlátokba ütközik.

Különösen igaz ez a kukoricára, mely a szövettenyésztés nehezen "megmunkálható" alapanyagainak sorába tartozik, protoplasztokra és a mikrospórára alapozott eljárások esetében egyaránt. A mikrospóra eredetű növények előállítása vagy a génbeviteli eredmények gyakran kis számú, szabadalmaztatott, korlátozott hozzáférhetőségű genotípushoz kötődnek, ami gátolhatja a módszerek szélesebb körű alkalmazását, s indokoltá teszi a felhasználható genotípusok körének bővítését.

A mikrospóra tenyésztés a növénynemesítés több fontos pontján hasznos kiegészítő módszer lehet. A megfelelő homogenitás eléréséhez több évi beltenyésztés szükséges. A haploid módszer
ezt a szakaszt elméletileg egyetlen generációra rövidítheti le. A többi haploid eljárás között, a mikrospóra módszer a transzgénikus növények előállítására irányuló munkában is érdeklődésre tarthat számt. Jelentőségét az adja, hogy különálló haploid sejtekbe lehet bejuttatni a géneket. A genom megkettőzése után az idegen gén is természetes állapotban, kétallélos homozigóta formában jelenik meg. Ez előrelépés lehet a korábbi diploid sejttranszfórmációkhoz képest, ahol a bejuttatott génnek a diploid genomba kell beilleszkednie.

A haploid módszer alkalmas a recesszív gének hatásának gyors vizsgálatára is. Keresztezéses módszerrel ez is csak több belenyésztéssel érhető el, míg a haploid eljárással csak a termékeny DH növények felnevelésére és tesztelésére van szükség.

A felsorolt lehetőségek mikrospóra módszerrel történő kiaknázása azonban jelenleg korlátozott a kukoricanemesítésben, mert világszerte is mindössze néhány genotípus mikrospórái alkalmasak fertő növény előállításra.

A mikrospóra vizsgálatokhoz felhasznált kukorica genotípusok előzetes androgenetikus és agronómiai szelekciónak eredményeként (Mórocz 1997), mindkét szempontból értékes tulajdonságokat mutattak. A kísérletek során arra is választ kerestünk, hogy miközben az indukcióra alkalmas genotípusú mikrospórákat szelektáljuk a tenyésztés során, kapcsolódnak-e ehhez nemesítési szempontból hátrányos tulajdonságok (fattyasodás, növény habitus, gyenge termőképesség, -kombinálódóképesség) a mikrospóra eredetű növények utódaiban.

A szomatikus hibridizációit hosszú idő óta sikeresen alkalmazták az egymással nem keresztezhető fajok, sőt nemzetiségek közötti hibridek létrehozására, melyek kedvező tulajdonságainak egyesítése a nemesítés számára korábban elérhetetlen volt. Az eljárást azonban nemcsak fajok közötti génátvitelre használják. Alkalmazásuk megpróbálásra és genom kölcsönhatások vizsgálatára is. A protoplazszt fúzió hasznos eszköz volt például a citoplazmás öröklés kutatásában, hiszen lehetővé tette két különböző sejt teljes citoplazmájának egyesítését. A nemesítési alkalmazások között számos példa található betegség ellenállóság, fonál- és rezisztencia, szárazság és hidegtűrésű tulajdonságok, vagy citoplazmás hímerősülés sikeres átvitelére. E tulajdonságok elsősorban a gazdasági céllal termeszett növények agronómiai értékét növelték. A disznövények esetében is hasznos módszernek bizonyult a szomatikus fajkeresztezés, olyan morfológiai tulajdonságok, mint például új virágszín,- alak, növénymagasság stb. kialakításában.

Elsősorban a kétszikű fajokkal (Nicotiana, Daucus, Solanum, Medicago, Brassica) végzett fűziós kísérletek bizonyultak sikeresnek. Az egyszikű növények közül a rizzsel és az árpával sikerült számottevő emlényeket elérni.
A kukoricasejtekkel végzett szomatikus hibridizáció azonban szinte alig érintett terület maradt, annak ellenére, hogy napjainkig száznál is több más növényfaj bevonásával hoztak létre különböző szomatikus híbrideket. A kukorica és búza faj szomatikus egyesítésére pedig - ismereteim szerint- nem történt korábbi kísérlet.

A szövettenyésztés “klasszikus” és általános gyakorlata szerint in vitro környezetben a sejt metabolizmus fenntartásához szükséges sók, vitaminok és szénhidrátforrások mellett kulcsszeręp jut a dedifferenciált sejtosztódás fenntartásához, vagy a növényregeneráláshoz szükséges különböző hormonkombinációkra.

Ebben a dolgozatban a kukorica mikrospórák tenyésztését és a szomatikus kukorica sejtek fűziós kísérleteit, szövettenyésztési szempontból közös tulajdonságokat mutató genotípusokon végeztem, melyeket Mórocz és mtsai (1990, 1991) egy évtizedes munkával alakított ki. Mindkét módszer kiegészítő része lehet egy nemesítési programnak, ezért fontos kérdés, hogy milyen szövettenyészetek alkalmazhatók a módszerek működtetésére. A kísérletekben felhasznált tenyészettel szövettenyészési szempontból egyedi jellemzője az, hogy hormonmentes N6M táptalajon, kallusz állapotukat, illetve növényregeneráló képességüket egyaránt megőrizve, tartósan tenyészthetők. Feltételeztük, hogy ezek a tulajdonságok előnyt jelentenek a mikrospóta tenyésztés és a szomatikus hibridizáció során is.

A dolgozatban bemutatásra kerülő kísérletek céljai az alábbiak voltak:

1. Termékeny DH (doubled haploid) kukorica növényeket állítani elő az ismert előzetes eredményekhez képest egyszerűbb módszerrel: előzetes portok izolálás, dajkatenyészetek és kollchécin alkalmazása nélkül.

1.1. Megnövelni a mikrospórák izolálás utáni életképességét a kukorica genotípus protoplaszt tenyésztéséhez bevált táptalaj vagy változatai alkalmazásával.

1.3. Megvizsgálni, hogyan hat a táptalajokban használt pH, ozmotikus érték és a 2,4-D regulátort a mikrospórák életképességére.

1.4. Összehasonlítani a kísérletek alapanyagául használt PH TC és a belőlük származó, tisztán mikrospóra eredetű MH SC növények androgén válaszát.

2. Albínó kukorica szuszpenzió és búza mezofillum protoplasztok fúziója polietilén glikollal.

2.1. Zöld hibrid kolóniák szelekciója, és növényregenerálás.

2.2. A regeneránsok hibrid jellegeinek morfológiai és molekuláris vizsgálata.
3. IRODALMI ÁTTEKINTÉS

3.1. Haploid növények, mikrospóraindukció

Számos egyéb sikeres haploid előállítási módszert is kidolgoztak. Megnövelt haploid indukciót eredményezett az anyai haploid indukáló vonalak (“inbred Stock 6”) (Coe 1968), és az
apai haploidokat eredményező spontán mutáció (“indeterminate gametophite”) (Kermicle 1969) alkalmazása. Ezek a módszerek sem bizonyultak azonban teljesen alkalmasnak nemesítői vonalak gyors előállításra. Főként az egyszerűen alkalmazható genetikai markerek hiánya korlátozta alkalmazásukat (Dieu és Beckert 1986).

Kasha és Kao 1971-ben felfedezte fel a Bulbosum technikát, melyben a Hordeum vulgare x H. bulbosum hibrid zigótában lezajló kromoszóma deléciót követően, szövettenyésztési módszerrel (embryo rescue) nevelik fel a haploid árpa növényeket (Dudits és Heszky 2000). Ezzel a módszerrel Jensen árpa monoploidokat állított elő 4,5-13,4 % gyakorisággal, 1974-ben (Bálint 1990).

A távoli keresztezéseken és genom elimináció alapuló ún. bulbosum technika más keresztezési kombinációkban is hasznosnak bizonyult. Ilyen például a búza x kukorica keresztezés, mellyel a haploid búza ma már rutinszerűen állítható elő (Dudits és Heszky 2000).

Az in vitro haploidok kutatásának korai időszakában a Datura portokokkal elért eredmények után (Guha és Maheswari 1964) a kutatók érdeklődése jelentős mértékben a mikrospórák in vitro androgenezise irányába fordult, bár a ginogenikus haploid előállítási kísérletek is folytatódta.

Ennek során a portokokba zárt vagy szabad mikrospórák egy része in vitro indukciós kezelés hatására, mitotikus osztódásokkal kísért sporofita fejlődési útvonalra tér át eredeti gametofita programja helyett. Jahne és Lörz összefoglalója alapján (1995), a legtöbb növényfaj esetében az egy- és korai kétmagvas mikrospóra állapot közötti fázisok bizonyultak legalakmasabbnak az

A mikrospórák androgenezisének portokon belüli, és az izolált formában ab initio (Pescitelli et al. 1994) történő indukciója a növény fajok túlnyomó többségénél két jól elkülöníthető nehézségi fokú feladatot jelent. A portok kultúrával általában több genotípusossal, és nagyobb hatékonysággal lehetséges a haploid indukció. A portok tenyészettekből felnévelt növények felhasználása során azonban sok problémát okozhat az, hogy hogy egy tenyészetben egyidejűleg előfordulhatnak „n” és a diploid portok falból származó „2n” sejtek is. Markerek nélkül nehéz megkülönböztetni a portokfal diploid, és a mikrospóra „n” vagy spontán DH (2n) kalluszait vagy embrióit. A portok
módszerrel előállítható növények vegyes ploidszintjéről Gu és mtsai (1983) kukoricával elért eredményei tanúsodnak. Vizsgálatuk során 8 genotípus 46 portok tenyészetéből nyert növényeinek citológiai vizsgálatát végezték el. A növények 60,9 %-a haploid, 28,3%-a diploid és 10,8 %-a mixoploid volt. Ezek a nehézségek kiküszöbölhetők az izolált mikrospóra tenyésztéssel. (Dudits és Heszky 2000). Az izolált mikrospórák a haploid egy sejttes rendszer további előnyeit is kínálják:

Pontosabb információt kaphatunk a táptalaj fejlesztési kísérletek eredményeiről, mert a mikrospórák közvetlenül érintkeznek a táptalajjal és így kiküszöbölhető a portokfal biológiai szűrő hatása.

Mód nyílik a sejtszintű haploid szelekcíóra, ami a recesszív gének legkorábbi szelekcíos szintje lehet.

In vitro termékenyítéshez felhasználható hímivarsejt izoláláshoz igen alkalmas forrás lehet, ha fenntartjuk az *in vitro* gametogenezist.

Lehetőséget ad pollen transzformációs vizsgálatokhoz, és az androgenezist szabályozó gének pontosabb vizsgálatára.

Az eredmények ellenére, még az androgenetikus szempontból sikeresnek számító növények esetében is megoszlott a felhasználók, a nemesítők választása az androgenetikus és a hagyományos haploid technikák gyakorlati alkalmazása között. Puolimatka és Pauk (2000) szerint, a kiterjedt kutatások és a búza androgenezisről felhalmozott tudás ellenére, a mikrospóra eredetű DH törzs nemesítési alkalmazása még mindig háttérbe szorul például a búza x kukorica keresztekézzel előállított haploidok mellett. Véleményük szerint, a továbblépéshez az egyes genotípusok igazítása kell javítani a tenyészeti körülményeket addig, míg alkalmasak lesz a nemesítési igényeknek megfelelő számú DH vonal előállítására (Puolimatka és Pauk 2000).

A hazai búza kísérletek alapján, a haploid törzsök előállítása hatékony eszköz lehet a nemesítésben és fajtafenntartásban, mert a megvizsgált hagyományos törzsök és portok eredetű DH változataik termőképessége, minősége, agronómiai értéke, genetikai variabilitása és stabilitása is azonos értékűnek tekinthető (Kertész et al. 2000). Ahhoz, hogy a haploid módszer a nemesítés hatékony részévé válhasson, a gyakorlatban fontos genotípusokból kellő számú, genetikailag stabil DH növényeket kellett biztosítani a nemesítési programokhoz (Barnabás et al. 2000).

A haploid módszer alkalmazásának fentebb említett fő céljai és feladatai minden tekintetben azonosak a kukorica esetében is. A kukorica portokok tenyésztéssel először Kínában sikerült

A portokból kiszabadított, izolált mikropórákra is érvényes, hogy nehezebben, kisebb hatékonysággal lehet tenyészteni, mint a sértetlen antérákat. Ráadásul eddig világszerte mindössze öt kukorica genotípusról számoltak be, melyek izolált mikropórái indukálhatóak voltak, és szövettenyészeteikből növényeket tudtak előállítani (Pescitelli et al. összefoglalója 1994).

A szerzők többsége a mikrospóra módszer hatékonyságát, az előállítható mikrospóra-embriók számán méri le. Az eddigi eredmények alapján azonban, a termékeny növények előállítása legalább ilyen fontos szempont, hiszen életképes szemek, azaz termés híján nehezen képzelhető el bármilyen további, például nemesítési felhasználás. Ennek a dolgozatnak az eredményei között ezért szerepel központi helyen a termékeny mikrospóra növények előállítása.

Az embriószám és a fertílis növény-előállítás jelentős fejlődéséről számolt be Genovesi és Yingling (1994). Ezt a dolgozatot megelőzően csak ők dokumentálták a termékeny növények előállítását, és számoltak be azok életképes utódnemzedékéről is. Eredményeiket a fentebb említett két eljárás közül azonban a közvetett módszerrel érték el.
3.2. Szomatikus hibridizáció

A növénynemesítés alapja a keresztezéssel létrehozott populációkban végzett szisztematikus selekció. A fajták, hibrídek túlnyomó többsége fajon belüli, genotípusok közötti keresztezésből ered. Ha e növényfajon belül egy-egy szükséges tulajdonság már nem található meg, akkor értékes génforrás szolgálhatnak a termeszett növények vad rokonai. Ezekben az esetekben távoli keresztezések alkalmazásával, faj és nemzetség hibrídek létrehozásával lehet a vad faj génjeit bevezetni a termesztsre alkalmas genotípusokba, majd több visszakeresztezés után leszüköteni a vad faj genetikai állományát a kívánt tulajdonságot hordozó génekre.

A szomatikus hibridizáció lehetőséget ad az ivaros inkompatibilitás megkerülésére és olyan hibrídek létrehozására, melyek fontos alapanyagok lehetnek: nemesítési szempontból az új tulajdonságok miatt, alapkutatási szempontból pedig az inkompatibilitással összefüggő kérdések tanulmányozásához. Ehhez a növények a testi sejtjeinek in vitro egyesítésére van szükség, melyet a szomatikus sejtek esetében a sejtíval eltávolítása előz meg.

A PEG mellet még számos egyéb fúziós kezelést is kialakítottak, de a legjelentősebb alternatíva az elektrofúzió lett (Zimmermann és Scheurich 1981).

Mind a PEG kezelés, mind az elektrofúzió széles körűen alkalmazható. A növényi protoplastok mellet baktérium- és gombaprotoplasztok, valamint állati sejtek egyaránt fuzionáltathatók ezekkel a módszerekkel. A sejtek fúziója nem fajspecifikus fiziko-kémiai folyamat. A membránok szerkezetében levő nagyfokú hasonlóság lehetővé teszi még rendszertanilag igen távoli fajok hibridizációját is (Dudits és Heszky, 2000). Salhani et al. (1985) tapasztalata szerint az általuk elektrofúzióval egyesített egérsejtek és petúnia protoplastok hibridsejtjeiben a növényi és állati sejtműködések egyaránt megharapadtak és még ilyen partnerek esetében is lehetséges a sejtszintű együttműködés (Dudits és Heszky 2000).

A hibridizációs kísérletekből nyert kalluszok, növények genetikai jellegének vizsgálatára a citológiai és a molekuláris módszerek adnak lehetőséget, melyek közül gyakori az izoenzim, RAPD és in situ hibridizációs technikák alkalmazása.

A dolgozatban bemutatásra kerülő munka célja olyan fúziós körülmények kialakítása volt, mely lehetővé tettek albínó kukorica és zöld búza sejtek egyesítését, a hibrid sejtek osztódását, s véső soron alkalmas volt zöld kaluszok kiválogatására és növényregenerálásra.
4. ANYAG ÉS MÓDSZER

4.1. Mikrospóra eredetű növények előállítása

4.1.1. Donor növények

4.1.2. Mikrospóra izolálás és tenyésztés

A hidegkezelés után, a címereket a takarólevelek közúl kiemelve, a virágzatokat csipesszel lehántottam a címer tengelyről. Ezután 10 perces felületi fertőtlenítés történt a keresskedelmi hypo 50%-os oldatával. A fertőtlenítő szer maradékát három steril vizes öblítéssel távolítottam el. A mikrospórák feltárása egy kávédarálóra szerelhető mixerrel történt, amely jól helyettesítette az általánosan használt, de lényegesen drágább Waring blendort. Egy-egy mintából 300-400 virágzat került megőrlére 100 ml ISO oldatban (Gaillard et al. 1991), egységesen 8 mp-ig. A feltárt vegyes fejlettségű mikrospórákat először kiszűrtem a törmelékből (210 µm Tetex szűrővel), majd 60 µm-es lyukbőgű (Polyscreen) szűrővel összegyűjtöttem. Az így nyert frakció 2 ml ISO oldatban szuszpendálás, majd kétfázisú Percoll grádiens oldatra (20 és 30 %-os) rétegezés után centrifugálásra került (1000 fordulat/perc, 3 percig). Három mikrospóra frakció jelent meg, melyek közül csak a legfelső, a 20 %-os Percoll fölől származó sejtek kerültek további tisztításra, mely egy következő centrifugálásból állt 0,44 M-os szaharózt tartalmazó tenyésztő táptalajon (Gaillard et al. 1991). Ebben a szakaszban a mikrospórák további két frakcióra váltak szét, ami a tenyésztésre
legalkalmasabb késői egymagvas, korai kétszögletű mikrospórák koncentrálódását eredményezte a felső rétegben. A tenyészést a sejtek 0,09 M-os szaharóz tartalmú táptalajjal végzett mosása előzte meg (Gaillard et al. 1991). A mikrospórák tenyésztése 6x10^5/ml sűrűségben, 35 x 10 mm-es Greiner csészékben, 2 ml tenyésző táptalajban (a továbbiakban mYP) történt (Gaillard et al. 1991). Az oldat 0,35 M szaharóz tartalmazott. A táptalajok összehasonlítása 24 csészés Greiner tálcákban történt. Minden mikrospóra tenyészet sötétben volt, 28 °C-on, 14 napig, majd 20- 24 °C-ra és változó megvilágítás alá került egészen a kolóniák kifejlődéséig. Kolhicinkezelést nem alkalmaztam sem a mikrospórák, sem a belőlük sarjadó növények kezelése során.

Az 1 mm-es átmérőt elérő kolóniákat N6M (Mórocz et al. 1990) hormonmentes, szilárd (5g/l Gelrite) táptalajra helyeztem, melyen 21 napos átoltásokkal a kalluszok és növények egyaránt jól fejlődtek 20°C –on és folyamatos megvilágítás mellett. A gyökeres, 6-10 cm-es hajtással, 35 x 10 mm-es Greiner csészékben, 2 ml tenyésztő táptalajban (a továbbiakban mYP) történt (Gaillard et al. 1991).

Az oldat 0,35 M szaharóz tartalmazott. A táptalajok összehasonlítása 24 csészés Greiner tálcákban történt. Minden mikrospóra tenyészet sötétben volt, 28 °C-on, 14 napig, majd 20- 24 °C-ra és változó megvilágítás alá került egészen a kolóniák kifejlődéséig. Kolhicinkezelést nem alkalmaztam sem a mikrospórák, sem a belőlük sarjadó növények kezelése során.

Az 1 mm-es átmérőt elérő kolóniákat N6M (Mórocz et al. 1990) hormonmentes, szilárd (5g/l Gelrite) táptalajra helyeztem, melyen 21 napos átoltásokkal a kalluszok és növények egyaránt jól fejlődtek 20°C –on és folyamatos megvilágítás mellett. A gyökeres, 6-10 cm-es hajtással, 35 x 10 mm-es Greiner csészékben, 2 ml tenyésztő táptalajban (a továbbiakban mYP) történt (Gaillard et al. 1991).

Az oldat 0,35 M szaharóz tartalmazott. A táptalajok összehasonlítása 24 csészés Greiner tálcákban történt. Minden mikrospóra tenyészet sötétben volt, 28 °C-on, 14 napig, majd 20- 24 °C-ra és változó megvilágítás alá került egészen a kolóniák kifejlődéséig. Kolhicinkezelést nem alkalmaztam sem a mikrospórák, sem a belőlük sarjadó növények kezelése során.

4.1.3. Növényregenerálás

A folyékony mikrospóra tenyésztő oldatokban növekvő egy mm nagyságot elérő kalluszokat csipesszel raktam át szilárd 50 ml N6M hormonmentes táptalajra. Az intenzív kalluszövedekedés érdekében a kalluszokat 10-14 naponként oltottam át friss táptalajra. A növényregenerálás megindításához 3-4 hétre kellett ritkítani az átoltásokat. Az első kísérletben különböző F1 családokat képviselő PH TC címerekből izolált mikrospórák tenyésztethetőségét vizsgáltam meg. Nyomon követtem az azonos körülmények között nevelt hibrid növények androgén reakcióinak címerenkénti variabilitását.

4.1.4. A táptalajok hatása a mikrospórák éleképességére

A második kísérlet célja a mikrospóra tenyésztés korai szakaszában tapasztalható alacsony életképességi arány javítása, valamint a két genotípus androgén reakciójának összehasonlítása volt. A kísérletben a ppN6M/89 (Mórocz et al. 1990), mN6M, és a mYP (Gaillard et al. 1991) táptalajokat vizsgáltam meg különböző tenyésztési szakaszokban.

Az mN6M táptalaj hasonlóan készül, mint a ppN6M/89 azzal az eltéréssel, hogy 0,1 g/l szaharóz tartalmazott és a 0,475 Osmol/kg osmotikus érték vízzel került beállításra. A táptalaj 2,4-
D-t nem tartalmazott, pH-ja KOH-dal 5,8-ra lett beállítva. Az N6 jellegű mikrospóra tenyésztő táptalajok és az mYP vitamin oldatának sterilizálása szűréssel (0,2 µm lyukbőségű membránon), míg az mYP többi alkotórészének csiramenti tes tése autoklavozással (120 °C 25 perc) történt. Az oldatokat 4 °C-on tároltuk felhasználásukig. A kísérletben felhasználásra kerültek mind az eredeti PH TC, mind az MH SC növények címerei, melyek az első kísérlet során két mikrospóra vonal keresztezéséből származtak.

A pH, ozmotikum és a 2,4-D hatások vizsgálatához az mN6M táptalaj különböző változatai készültek el úgy, hogy mindegyik összetevő két-két értéke került vizsgálatra: pH 3,0 és pH 5,8, ozmotikum 0,475 és 0,600 Osmol/kg valamint 2,4-D 0,2 és 0 mg/l.

A fenti táptalaj változatok (1. táblázat) hatását az élő mikrospórák mennyiségén mértem le, kísérletenként legalább 1500 mikrospóra megszámlolásával.

Az előkísérletek során a mikrospórák korai életképességének vizsgálata fluorescein diacetátos (FDA) festéssel is megtörtént (adatok bemutatása nélkül), de az értékelés egyszerűsítése érdekében az első napi számolásoknál a megnőtt, sűrű citoplazmás mikrospórák, a 7. napi értékelésnél pedig az osztódó és a szemmel láthatóan élő sejtek számoltam meg, mivel ezek könnyen megkülönböztethetők voltak az elpusztult, kiüresedett vagy összezsugorodott mikrospóráktól.

4.1.5. Statisztikai értékelés

A táptalaj kísérletekhez randomizált teljes blokk elrendezést alkalmaztam. Ismétlésként az egyes címerek szolgáltak. A varianciaanalízis a Microsoft Excel programmal végeztem el.
4.1.6. Oldatok, táptalajok

1. táblázat: A mikrospóra tenyésztési kísérletekhez felhasznált táptalajok és törzsoldatok:

<table>
<thead>
<tr>
<th></th>
<th>ppN6M/89</th>
<th>mN6M</th>
<th>mYP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>KNO₃</td>
<td>2830</td>
<td>2830</td>
<td>2500</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>463</td>
<td>463</td>
<td>0</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>400</td>
<td>400</td>
<td>510</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>370</td>
<td>370</td>
<td>3700</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>300</td>
<td>300</td>
<td>176</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>ml</td>
<td>ml</td>
<td>ml</td>
</tr>
<tr>
<td>N₆ vitaminok+ glicin (Chu et al 1975)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Strauss vitaminok –L aszparagin (Green 1975)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MS mikroelemek (Murahige and Skoog 1962)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FeNa₂EDTA</td>
<td>5</td>
<td>5</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>Fruktóz</td>
<td>30000</td>
<td>30000</td>
<td>0</td>
</tr>
<tr>
<td>Glükóz</td>
<td>50000</td>
<td>50000</td>
<td>0</td>
</tr>
<tr>
<td>Maltóz</td>
<td>2500</td>
<td>2500</td>
<td>0</td>
</tr>
<tr>
<td>Galaktóz</td>
<td>2500</td>
<td>2500</td>
<td>0</td>
</tr>
<tr>
<td>Galakturonsav</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>Glükuronsav</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>L-asparagin</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>L-glutamin</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>L-serin</td>
<td>100</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Inosít</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Szaharóz</td>
<td>10000</td>
<td>100</td>
<td>29950</td>
</tr>
<tr>
<td>2,4 D</td>
<td>0,4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naftil ecetsav</td>
<td>0,7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zeatin (kevert izomerek)</td>
<td>0,7</td>
<td>0,7</td>
<td>0</td>
</tr>
<tr>
<td>PH</td>
<td>2,9-3,0</td>
<td>5,8</td>
<td>5,8</td>
</tr>
<tr>
<td>(Beállítás nélkül)</td>
<td>(KOH)</td>
<td>(KOH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mOsmol/kg</td>
<td>mOsmol/kg</td>
<td>mOsmol/kg</td>
</tr>
<tr>
<td>szagotikum</td>
<td>700</td>
<td>475</td>
<td>475</td>
</tr>
</tbody>
</table>
A kísérlethez felhasznált törzsoldatok:

<table>
<thead>
<tr>
<th></th>
<th>Mg/100ml</th>
<th>Mg/100ml</th>
<th>Mg/100ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mn SO$_4$ x4H$_2$O</td>
<td>Zn SO$_4$ X7H$_2$O</td>
<td>H3BO3</td>
</tr>
<tr>
<td>MS mikroelemek (Murahige and Skoog 1962)</td>
<td>2230</td>
<td>860</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>Mg/100ml</td>
<td>Mg/100ml</td>
<td>Mg/100ml</td>
</tr>
<tr>
<td></td>
<td>Thiamin HCl</td>
<td>Piridoxin HCl</td>
<td>Nikotinsav</td>
</tr>
<tr>
<td>N6 vitaminok+ glicin (Chu et al 1975)</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Mg/100ml</td>
<td>Mg/100ml</td>
<td>Mg/100ml</td>
</tr>
<tr>
<td></td>
<td>Thiamin HCl</td>
<td>Piridoxin HCl</td>
<td>Niacin</td>
</tr>
<tr>
<td>Strauss vitaminok –L aszparagin (Green 1975)</td>
<td>2,5</td>
<td>2,5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>g/l</td>
<td>g/l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FeSO$_4$x7H$_2$O</td>
<td>Na$_2$EDTA</td>
<td>Megjegyzés</td>
</tr>
<tr>
<td>FeNa$_2$EDTA</td>
<td>5,57</td>
<td>7,45</td>
<td>45 perc forralás, majd 11-re feltöltés, tárolás: 4-8°C-on</td>
</tr>
</tbody>
</table>
4.2. Kukorica x búza szomatikus hibridizáció

4.2.1. Protoplaszt donor növények

4.2.2. Szuszpenziós tenyészetek

A sejttenyészetek kialakítása és fenntartása N6M folyékony táptalajon történt (Mórocz et al. 1990). A sejttenyészetek (2 g/50 ml N6M) heti átoltással tenyésztettem, míg protoplasztálásra alkalmassá váltak. A fűzióra legmegfelelőbb sejtállapot ismételhetősége érdekében, előkísérletként 42 db 2g/50 ml szuszpenziót tenyésztettem vizsgáltam meg, melyekből naponta három minta sejtömeg növekedését, pH és ozmotikum értékeit mértetem (Osmomat 030-D). A minták öszekeverése után következett a protoplaszt izolálás, majd a fűzió, melynek során az izolálható protoplaszt mennyiséget és a hibrid sejtek arányát mértem.

4.2.3. Növénynevelés

A búzanövényeket (GK Óthalom) steril körülmények között csíráztattam. A magokat 1 percig abszolút alkohollal, 3 percig 0,1 %-os higany kloriddal, 15 percig kereskedelmi hypo 50 %-os oldatával kezeltem, majd háromszor lemostam steril ioncserélt vízzel. A növényeket nyolc napig 18 cm-es Schott csövekben, Gelrittel szilárđított steril csapvízen neveltem 22 °C –os hőmérsékleten folyamatos megvilágításban.

4.2.4. Protoplaszt izolálás

A kukorica protoplasztokat Mórocz et al. (1990) leírása szerint izoláltam, azzal az eltéréssel, hogy kétszakaszos enzimes emésztést alkalmaztam: 14 óra +4 °C-on rázatás nélküli kezelést, két óra szobahőmérsékleten végzett, kiméletes rázatással kísért szakasz egészített ki. A búza mezofillum protoplasztok izolálásához 8 napos csirámentes körülmények között nevelt növények levéllemezét vágtam le, majd belehelyeztem 10 ml “A” oldatba (Sarhan és Cesar 1988). Harminc perc úsztatás után a leveleket 2-3 csepp “A” oldatot tartalmazó Petri csészébe helyeztem, és az epidermiszt csipesszel eltávolítottam a levelek fonákjáról, majd a 2 g nyúzott levelelet 10 ml izoláló oldatban (Sarhan és Cesar 1988) +4 °C-on tartottam 4 órán át. Ezt követően a
protoplazmotokat 60 um-es lyukbőségű szürön elválasztottam a törmeléktől, majd 1000 fodorát/perc centrifugálással leülepítettem, végül UM oldatban átmostam (Uchimaya és Murashige 1974).

4.2.5. Kukorica és búza protoplasztok fuziója

Az izolált protopasztokat 2:1 arányban (1 millió kukorica és 0,5 millió búza) összekevertem, és 10 ml UM oldatban felszuszpendáltam, majd lecentrifugáltam. A sűrű protoplaszt szuszpenziót (1,5 x 106 /400 ul UM) 20 percig ülepítettem egy 10 mm átmérőjű cseppben, 35 mm-es Greiner Petri csészében, rázkódás mentes helyen (kikapcsolt lamináris boxban). Mikor a sejtek hozzáatadtak a csészébe aljához, egy ml, 40 %-os Kao D oldatban (Kao és Michayluk 1974) oldott, 3500 MW Sigma poly étílen glikolt (PEG) adtam hozzá, nagyon lassú, folyamatos pipettázással, gondosan elkerülve a csepegetést, a protoplasztok fellazítását illetve felúsztatását. Öt perc PEG kezelés után 10 ml Kao C mosóoldattal hígítottam a PEG oldatot, igen lassú pipettázássával adagolt, és eltávolítva a keveréket. Befejező lépésként a mosóoldatot 1 ml ppN6M /89 tenyésztő táptalajra cseréltem (Mórocz et al. 1990). A hígítás hatékonyságát a fúziós és mosó oldat keverék ozmotikus értékének mérésével ellenőriztem minden ml mosóoldat hozzáadása után.

4.2.6. A szomatikus hibridek azonosítása

A hibrid sejtek első számlálása közvetlenül a fúzió után történt, fénymikroszkóp segítségével. A tenyészeteket LGT (low gelling temperature) agarózzal beágyaztam, így a jól látható hibrid sejtek helyzetét a csészébe alján bejelöltem. A zöldülést mutató, feltételezett hibrid kalluszok, majd növények vizsgálata során kromoszómaszámlálást, DNS markereket alkalmaztunk (RAPD, in situ hibridizáció), valamint morfológiai összehasonlítást, és hideg tesztet végeztünk el.

A számláláshoz Feulgen módszerrel festettem meg a kromoszómákat.

A molekuláris DNS vizsgálatot RAPD (Randomly Amplified Polimorphic DNA) primerekkel végezttem el. A DNS-t CTAB módszerrel (Bousquet et al. 1990) tisztítottam. A reakció oldat (PCR, Polymerase Chain Reaction) a 20 μl térfogatban a következő összetevőket tartalmazta: 10 mM Tris HCl (pH 8,5), 50 mM KCl, 2mM MgCl2, 100 μl dNTP keverék (Pharmacia), 5 pmol primer (Operon Alameda), 10 ng genomi DNS, és 0,5 egység (unit) Taq polimeráz enzim (Boehringer Mannheim). A reakciót Hybaid Omnigene PCR készülékkel végezttem el a következő programmal: 1 perc denaturáció 94 0C-on, majd 35 cikluson át 30 mp 35 0C-on, 1 perc 72 0C, 5 mp 94 0C-on, végül egy ciklusban 30 mp 35 0C-on és 10 perc 72 0C-on.
A reakció termékeket 2,0 %-os agaróz gélen választottam el. A festés 0,5 µg/ml töménységű ethidium bromidos vizes oldatban történt. A kezelés időtartama 30 perc volt.

4.2.7. In situ hibridizáció

A fluorescens in situ hibridizációt Reader és mtsai. (1994) leírása alapján készült el. A búzból izolált teljes genomi DNS-t a beiktatott szonikálok 1000-1500 bp méretű darabokra törte. A DNS jelölése az alábbiak szerint történt: 5 µl Nick transzlációs puffer (0.5 M Tris HCl, pH: 7.8, 0.05 M MgCl₂, 0.5 mg/ml Bovine Serum Albumin), 5 µl jelölletlen nukleotid mix (0.5 mM dCTP, dGTP, dATP in 100 mM Tris HCl oldatban, pH: 7.5), 3,5 µl flourokróm jelölésű nukleotid keverék (1 µl 0.05 mM dTTP, 2.5 µl Fluorogreen [Amersham]), 1 µl 100 mM dithiotreitol és 200 ng/ µl búza DNS hozzáadása után a keverékét steril vízzel 45 µl térfogatúra egészítettük ki. Ezután 5 µl DNS polimeráz/DN-áz I (Gibco) hozzáadásával állítottuk le az enzim aktivitást. A jelölletlen kettős szálú kukorica DNS-t 20 perces autoklávozással egyszálítottuk, majd a próbához 30 szoros mennyiségében hozzáadva az azonos szekvenciák lekötésére használtuk a hibridizáció során. Az oldathoz 0,1 térfogat 3 M-os nátrium acetát oldatot, majd 3 térfogatnyi etilalkoholt adtunk. Összekeverés után a csapadék 1 óra alatt vált ki −80 °C –on. Centrifugálás után a felülúszót eltávolítottuk és a DNS csapadékot 4 °C-on 500 µl 70% -os etilalkohollal mostuk át, majd újabb centrifugálás és a felülúszó eltávolítása után a csapadékot 10-12 óráig szárítottuk, végül 20 µl TE pufferben feloldottuk. A tárgylemezre ötven µl hibridizáló oldatot (20 µl 25%-os dextrán szulfát, 5µl 20x SSC, 1,25 µl 10 %-os nátrium dodecil szulfát) pipettázunk, majd 50 ng jelölő próbát és kompetitor DNS-t adtunk hozzá. Ezután két óra inkubálás következett 65 °C-on. Végül mosás után a 1 µl/ml koncentrációjú DAPI (4, 6 –diamino-2-fenilindol) festés következett. A kromoszómákat Zeiss Axioskop 20 epifluorescens mikroszkóppal vizsgáltuk meg, kiegészítve egy 10-es és egy három sávos, 25 számú szürövel, az FITC illetve a DAPI megjelenítésére. A képeket egy SPOT CCD kamera rögzítette SPOT program segítségével (Diagnostic Instruments, Inc). A képfeldolgozást Image Pro Plus programmal végeztük el.
5. EREDMÉNYEK,

5.1. Mikrospóra eredetű növények előállítása

5.1.1. Mikrospóra izolálás és tenyésztés

5.1.2. Regenerálóképes, fenntartható tenyészettek létrehozása PH TC mikrospórákból

A PH TC mikrospóra kolóniák közül 40 (25 %) érte el a kallusz méretet (>1 mm), és 24 (15%) volt alkalmas növényregenerációra képes fenntartható tenyészet kialakítására hormon mentes N6M táptalajon (2. táblázat) (2.A. ábra).

<table>
<thead>
<tr>
<th>Fejlettségi állapot</th>
<th>Összes mikrospóra válasz/160 F1 címer db (%)</th>
<th>Válaszadó F1 címer db</th>
<th>Mikrospóra válasz db /F1 címer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrospóra eredetű kallusz</td>
<td>40 (25)</td>
<td>nincs adat</td>
<td>nincs adat</td>
</tr>
<tr>
<td>Fenntartható tenyészét</td>
<td>24 (15)</td>
<td>6</td>
<td>2...12</td>
</tr>
<tr>
<td>Regeneráló tenyészét</td>
<td>6 (3,8)</td>
<td>4</td>
<td>1...3</td>
</tr>
<tr>
<td>Termékeny növényt regeneráló tenyészet</td>
<td>4 (2,5)</td>
<td>4</td>
<td>1-1</td>
</tr>
<tr>
<td>Öntermékenyíthető DH vonalak</td>
<td>2</td>
<td>2</td>
<td>1-1</td>
</tr>
</tbody>
</table>

Hat tenyészetből nyertem zöld növényeket, melyek közül négy vonal bizonyult fertilisnek. Albinó növények nem fejlődtek.
5.1.3. Termékeny mikrospóra növények és az utódnemzedék

A mikrospóra tenyészetek fenntartható és bőséges növényregenerációs képességet mutattak. Egy átoltási ciklus alatt (21- 25 nap) tíz-tizenkét kiültetésre alkalmas növényt lehetett felnevelni 1-1,5 g leoltott kalluszból (2.B. ábra). A tenyészetek növényregenerációs képessége és a növények minősége a kísérletek két éve alatt nem romlott. A termékeny DH vonalak közül kettő (ML-8, ML-15) csak szabadföldi körülmények között bizonyult fertilisnek. Az üvegházi hatás a másik két vonal (ML-1, ML-2) termékenyiíthetőségét is alacsony szintre vetette vissza, viszont hibridjük mind szántóföldön, mind üvegházban igen életerősnek és termékenynek bizonyult (2.C,D,E,F ára).

Öntermékenyített szemeket az ML-1 és az ML-2 növényeken sikerült elállítani.

5.1.4. A táptalaj módosítások hatásai a mikrospórák életképességére

Az mN6M táptalajjal sikerült megnövelni a mikrospórák életképességét az mYP és a ppN6M/89 táptalajokhoz képest a tenyészés korai szakaszában (3. táblázat).

<table>
<thead>
<tr>
<th>Táptalaj</th>
<th>Életképességi %</th>
<th>Mikrospóra kolóniák (db)</th>
<th>Regeneráló kallusztenyészetek (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. nap</td>
<td>7. nap</td>
<td>30. nap</td>
</tr>
<tr>
<td>PpN6M/89</td>
<td>6,1±1,5</td>
<td>1,0±0,3</td>
<td>2,5±0,9</td>
</tr>
<tr>
<td>Mn6M</td>
<td>25,3±6,2</td>
<td>5,8±0,7</td>
<td>246,0±28,2</td>
</tr>
<tr>
<td>YPM-G</td>
<td>13,2±2,9</td>
<td>4,1±0,8</td>
<td>165,3±15,9</td>
</tr>
</tbody>
</table>

Ebből a kísérletből azonban termékeny növényeket nem nyertem.

A megvizsgált táptalajok közül az 5,8-as pH-jú szignifikánsan jobb volt (P=1%) a pH 3-as értékündel. Ezzel szemben a leírt ozmotikus értékek és a 2,4-D nem befolyásolták a mikrospórák életképességét. (4. táblázat).
4. táblázat: A pH, 2,4-D és az ozmotikus érték (Osmol/kg) hatásai az mN6M táptalajban tenyészett mikrospórák életképességére a tenyésztés 1 napján számolva (% ±SE) (n=12). A csillaggal (*) jelölt értékek szignifikáns különbséget jelölnek.

<table>
<thead>
<tr>
<th>pH érték</th>
<th>1. napi életképesség</th>
<th>2,4-D mg/l</th>
<th>1. napi életképesség</th>
<th>ozmotikus érték</th>
<th>1. napi életképesség</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%±SE (2)</td>
<td></td>
<td>%±SE</td>
<td>Osmol/kg</td>
<td>%±SE</td>
</tr>
<tr>
<td>3,0</td>
<td>9,77±1,87*</td>
<td>0,2</td>
<td>13,98±1,71</td>
<td>0,475</td>
<td>13,94±2,28</td>
</tr>
<tr>
<td>5,8</td>
<td>16,98±1,72*</td>
<td>0</td>
<td>13,47±2,39</td>
<td>0,600</td>
<td>12,76±1,90</td>
</tr>
</tbody>
</table>

A MH SC mikrospórák az mN6M táptalajban életképesebbek voltak fejlődésük korai szakaszában (29,7%), mint az eredeti PH TC tenyészetei (18,64%).

Azonos nevelési és tenyésztési körülmények között nevelt F₁ donor növények androgén reakciója között is jelentős variabilitást tapasztaltam (5. táblázat).

5. táblázat: Azonos körülmények között nevelt és feldolgozott üvegházi PH TC címerek mikrospóra reakciójának változékonysága (78 napos növénynevelés, 18 nap hidegkezelés +7°C-on).

<table>
<thead>
<tr>
<th>Minta Sorszám</th>
<th>Fedő levél (db)</th>
<th>Szeparált mikrospóra frakciók mennyisége (mm)</th>
<th>Mikrospóra reakció</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20% 20/30% 30%Osztódás Mikrospóra kolónia Fenmtartható kallusz tenyészeti Növény regenerálás Termékeny növény</td>
<td></td>
</tr>
<tr>
<td>/29</td>
<td>4</td>
<td>2 5 8</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>/30</td>
<td>5</td>
<td>8 0,5 0</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>/31</td>
<td>4</td>
<td>0,5 3 3</td>
<td>+ + - - - - - -</td>
</tr>
<tr>
<td>/32</td>
<td>5</td>
<td>2 5 5</td>
<td>+ + - - - - - -</td>
</tr>
<tr>
<td>/33</td>
<td>5</td>
<td>6 1 0,5</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>/34</td>
<td>5</td>
<td>2 3 3</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>/35</td>
<td>3</td>
<td>1,5 4 6</td>
<td>+ + + + + + -</td>
</tr>
</tbody>
</table>

27
5.2. Kukorica x búza szomatikus hibridizáció

5.2.1. Protoplasztok izolálása, fűziója, tenyésztése

Azonos izolálási körülmények között a kukorica protoplasztok mennyisége 4-10 míg a búza protoplasztoké 1-2 millió között változott. Az ismétlődő tenyésztések során, a kukorica szuszpenziók tömeg gyarapodása, pH és ozmotikum értékeinek változásai jól ismételhető görbéket követtek. A fűziós kezelések eredményessége a protoplasztok „minőségén” múlott, mely azonban nem volt mérhető az említett négy mérhető változóval. Az eredményes fűzió szempontjából jó kondícióban levő protoplasztokat nem károsította a kezelés és az egyesült sejtek aránya a 20%-ot is elérte a legjobb kísérletben. A hibrid sejteket jól megkülönböztette az, hogy mind a búza kloroplasztiszok, mind a kukorica protoplasztok fonalas citoplazmáját tartalmazták (3.C. ábra).

Az élő sejtek aránya azonban, még a legjobb esetekben is igen gyors ütemben, a tenyésztés első hetében 2% alá csökkent anélkül, hogy a sejtek egyet is osztódtak volna. A túlélő hibrid sejtek általában a tenyésztés tízidei napján, 5-7 nappal a sértetlen kukorica sejtek után kezdtek el osztódni. A búza kloroplasztiszok még 3-4 héttel a sejtjegyesítést követően is megkülönböztethetőek voltak a kukorica citoplazmában (3.D. ábra). Később azonban a 10-50 sejtes kolóniákat már nem lehetett megkülönböztetni, az albinó kukorica kolóniáktól.

5.2.2. Zöld növények regenerációja

Hét zöldülő embriogén kallusz szelektáltam feltételezett hibridként, melyek három független kísérletből származtak. Az első differenciálódást mutató zöld embrió hat hónappal a fűziós kezelés után fejlődött ki, de a hajtás és gyökértényezősöcsúcok kialakulása után a növekedés megállt és az embrió elhalt. Ezt követően, az átoltási időközök megnövelésével a tenyészetekben több embrió jelent meg, melyek már alkalmasak voltak növényregenerációra (3.E. ábra). Egy kallusz klónból sikerült zöld növényeket nevelni, melyek a növényregeneráció 6-12. hónapjai között szinte minden átoltással javuló morfológiai megjelenést mutattak, de termést nem sikerült előállítani önterményítéssel és idegen porral sem. A zöld kalluszok és növények csak a fűziós kezelésnek kitett tenyészetekből fejlődtek ki.

5.2.3. A feltételezett hibrid tenyészetek vizsgálata

A zöld tenyészetek normál kukorica növényekké fejlődtek (3.F. ábra). A citológiai vizsgálat során változó számmal (47-56) kromoszómát találtunk az egyes mintákban. A növényregenerációt megelőzően, kalluszokból készített preparátumokon pro-metafázisban levő kromoszómákat találtunk a jól számolható és azonosítható metafázis helyett. Később, a regenerált növény

5.3. Új tudományos eredmények

Új tudományos eredmények tartom:

1. Az első hazai mikrospóra eredetű vonalak előállítása az ismert előzetes eredményekhez képest egyszerűbb módszerrel: portok izolálás és előtényesztés, dajkatenyészetek valamint kolchicin alkalmazása nélkül.

2. A mikrospóra növények második nemzedéke (PH SC) főlényének kimutatása a kiindulási növényekhez (PH TC).

4. A kukorica és bútza protóplasztok fúziós módszerének kidolgozása.

5. Életképes kukorica x bútza hibrid sejtvonal és növények létrehozása.

6. A hibrid növények jellemzése DNS vizsgálatokkal.
4. ábra: a kukorica (M), hibrid (H) és búza növények DNS mintázata. A: OPA 07, B: OPA 09 és C: OPA 10 primerekkel
6. KÖVETKEZTETÉSEK ÉS JAVASLATOK

6.1. Kukorica mikrospóra tenyésztés, és haploid növények előállítása

A magasabb rendű növények sejttenyészetei közül egyedül az izolált mikrospóra szuszpenzió jelent igazán külön álló sejteket tartalmazó tenyészeteket, de kevés azoknak a fajoknak a száma, melyekre a mikrospóra tenyésztés módszere rutinszerűen kidolgozott lenne (Dudits és Heszky 2000).

A szakirodalomban megjelent izolált mikrospóra-tenyésztési kísérleteket főként a DH vonalak előállítása és a haploid sejtranszformáció lehetősége motiválta. Ahhoz, hogy ezek a módszerek túlléphessenek a kísérleti szinten, és alkalmazhatóak legyenek gyakorlati feladatok megoldására, olyan mikrospóra-növény rendszerre van szükség, mely végeredményként életképes termést tud nyújtani. Az irodalmi összefoglalóban említett portok tenyésztési kísérletek eredményeit ismertté váltak a válaszadó genotípusok, a tenyesztésre eredményesen alkalmazható táptalajok, a megfelelő hideg előkezelés, és a növényregeneráláshoz, kromoszómaduplázáshoz szükséges kezelések is.

A mikrospóra-tenyésztő táptalaj kísérleteinek az az általános tapasztalat indokolta, hogy az izolált mikrospórák életképessége a tenyésztés első napjaiban töredékre csökken. Ezen próbáltam javítani a ppN6M/89 táptalaj alkalmazásával, amely a mYP–nél lényegesen gazdagabb összetételű, sajátosan alacsony pH-jú (3,0) (1. táblázat), és a HE/89 genotípus (Mórocz et al. 1990) diploid sejtjei (protoplasztjai) igen jól tenyészthetők benne. Mivel ez a genotípus szerepelt a PH TC pedigrégében, és a PH TC előzetes portok indukciója hasonló hormon autotróf kallusz eredményezett, ezért azt feltételeztem, hogy a mikrospórák is kedvezően reagálnak a ppN6M/89–
ra. Valójában ezzel ellentétes eredményt kaptam (2. táblázat). E tapasztalat alapján készítettek el az mN6M táptalajt, mely megegyezett a ppN6M/89 összetétélével, de pH, ozmotikus értékei, és 2,4-D mentessége a mYP táptalajéval volt azonos. Ezzel a módosítással az mN6M az mYP táptalajnál is jobb túlélést biztosított a mikrospóráknak, bár a tenyésztés előrehaladtával ez az előny csökkent. Hasonló jelenségről számoltak be Pescitelli et al. (1990a) az izolálási technika és az alacsony hőmérséklet előnyös hatásaival kapcsolatban. A részletes táptalajkísérletre a pH, az ozmotikum és a 2,4-D tartalom hatásainak rangsorolhatósága, valamint a PH TC és az MH SC genotípusok összehasonlítása érdéekében került sor. A táptalaj változtatások közül legjelentősebbnek a pH bizonyult, és megerősítést nyert az 5,8-as pH használatának helyessége, amit Genovesi és Yingling (1994) valamint Pescitelli és mtsai (1989) közleményeiben is megfigyelhetünk.

Barloy és mtsai (1989) közlése szerint az általuk vizsgált androgén hibrid növények (DH5xDH7, DH7xDH9) címerei között nem volt jelentős különbség a válaszadó antérák számában. Ebből arra következtettek, hogy a donor növények nevelési körülményei nem befolyásolják az androgenezishez szükséges gének kifejeződését. Ezzel ellentétben nagyfokú variabilitást tapasztaltak mind az azonos feltételek között nevelt PH TC mind a MH SC növények címerei között (5. táblázat), valamint időszakos változás is megfigyelhető volt a mikrospóra indukció hatékonyságában. Tapasztalatomat követve az is alátámasztja, hogy az ugyancsak a DH5xDH7 mikrospórákat tenyésztő Gaillard és mtsai (1991) már utaltak az egységes növénynevelési körülmények fontosságára, az innen eredő hatások variációra a mikrospóra válaszban. Kísérleteimben az androgén reakcióra egyébként bizonyíthatóan képes PH TC és MH SC hibridek egyes növényei között tapasztalt indukálhatósági variabilitás közevetve arra utal, hogy a genetikai háttér mellett a növény aktuális élettani állapota is fontos az androgén folyamatban.

Bár az izolált kukorica mikrospórákkal kapcsolatban jelent meg olyan bizakodó vélemény, amely elképzelhetőnek tartotta a repcéhez hasonló hatékonyság elérését (Gaillard et al. 1991), ez azonban a mai napig sem teljesült maradéktalanul. A legjelentősebb akadályt az indukcióna alkalmas genotípusok szükessége valamint termékeny növények előállítási nehézségei jelentik.

Összefoglalásul, a következő eredményeket tartom fontosnak az itt bemutatott munkából. Megkíséreltünk összeállítani egy egyszerűsített, költségtakarékos, közvetlen mikrospóra izolálási módszert. Termékeny kukorica növényeket és azok utódnemzedéket is produkáló mikrospóra-növény rendszert sikerült működtetni, tehát bővítettük a közvetlen mikrospóra tenyésztés eredményeit (Pescitelli et al. 1994), mert hasonlót eddig csak komplex, közvetett módszerrel érték el (Genovesi és Yingling 1994).

6.2. Kukorica szomatikus hibridizáció

A laboratóriumunkban (Gabonatermesztési Kutató Kht., Szeged) rendelkezésre álló morfogén albínó kukorica sejt szuszpenzió jó alapul szolgált a fúziós kísérletekhez. A sokéves vizsgálati idő alatt egyetlen zöld revertáns regeneráns növényt sem találtunk sem a fenntartott tenyészetekben, sem a PEG kezelést kapott, csak albínó kukorica protoplastokat tartalmazó kontrollban. Mivel azonban az albínó fenotípus genetikai hátterét nem ismerjük, nem zárhatjuk ki maradéktalanul az albínó fenotípus spontán reverziójának lehetőségét.

A kukorica és búza protoplasmájának egyesítésétől nem lehetett reálisan együttműködő hibrid genetikai és kémiailag is megfigyelni, hiszen várható volt a szomatikus inkompatibilitás (Dudits 1982) a két faj filogenetikai távolsága és az eltérő élettani tulajdonságai miatt. Volt azonban esély kisebb kromoszóma darabok, gén szegmentumok átvitelére.

A fúziót követő mikroszkópos megfigyelés kétségtelenül bizonyította az osztódó, PEG kezelésével előállított hibrid genetikai és kémiailag is megfigyelhető alapú változások és az albínó genetikai változások fennállása miatt. A hosszú regenerálási időszak során a növények

A RAPD vizsgálat búzára utaló szekvenciákat jelenített meg. A búza DNS jelenlétét az in situ vizsgálat tette láthatóvá. Mivel a teljes DNS-t jelöltük, azt feltételezzük, hogy repetitív szekvencia darabok épültek be a kukorica genomba, ezt azonban nem bizonyítottuk. Tekintettel a nagy számú, sok kromoszómán eloszlott búza jelre, feltételezhetjük, hogy kiterjedt genetikai átrendeződés zajlott le a szülői DNS-ben. Ezt tűnik alátámasztani az is, hogy hosszú regenerációs időszak alatt, a kezdetben gyorsan elhaló torz hajtáskezdemények fokozatosan felváltották a normálishez közeli megjelenésű növények. A genom összetétel értelmezéséhez jó alapot nyújthat egy korai tanulmány, melynek eredményei mitózisban és interfázisban levő protoplasztok fúziójára épült (Szabados és Dudits 1980). A korai kromoszóma kondenzáció (premature chromosome
condensation PCC) teljes fragmentációt idézhet elő az interfázisban levő magban. A citológiai vizsgálatok kromatin darabokat mutattak ki, melyek képesek beépülni a hibrid sejtek interfázisban levő magjába, az egymást követő osztódási ciklusok során. Bár ezek az S fázishoz kötődő korai kromoszóma kondenzációk nagyon ritkák, mégis magyarázatul szolgálhatnak a búza DNS szigetek kialakulására.

Bár egyedi és sok tekintetben még ismeretlen genetikai eseményhez jutottunk a búza DNS-t is tartalmazó kukorica genotípussal, a regenerált növények több további lehetőséget kínálnak genetikai és stressz vizsgálatokra. A búza oldalról várható tulajdonságok között a hidegtűrés vizsgálata tünik logikusnak.

A létrehozott hibrid genotípusnak nincs közvetlen nemesítési jelentősége. Sikerült azonban kialakítani olyan sejt fúziós körülményeket, melyek között lehetővé vált a két faj genomjának egyesítése. Ez lehetőséget ad a búza régiók hígítására például kukoricával történő visszahibridizálás esetén.

A zöld kolóniák szelekciója alapján a fúzió hatékonysága igen alacsony, ezért – fúziós kísérletek folytatása esetén- célszerű lenne szelektálható markert (pl. foszfinotricin acetil transzferáz) hordozó búza levél protoplasztokat (Pauk et al. 1998) alkalmazni. A szelekciós nyomás miatt esetleg több hibridsejtben válhat aktívvá a búza DNS. Ebben az esetben a hibridek azonosítása is biztosabb, mert a szelektív gén egyértelmű bizonyíték a búza genom jelenlétrére.
7. ÖSSZEFoglalás

A hormonmentes táptalajon fenntartható-, és regeneráló képességét is hosszú ideig megőrző kukorica genotípusokat két szövettenyésztési szempontból fontos területen alkalmaztam.

1. A mikrospóra tenyésztés során az volt a cél, hogy a módszert dajkatenyészetek alkalmazása illetve portok előtenyésztés nélkül, az eddig leírt genotípuskört bővítsé és nem utolsósorban a termékenyt utódnemzedéket is prezentálva alkalmazzam. Megvizsgáltam az agronómiai értékeket is hordozó PH TC háromvonalas kukorica genotípus mikrospóra reakcióját három folyékony tenyésztő táptalajon. Az izolálás során elhagyattam a portok előtenyésztését, a növényelőállításhoz egy mikrospóra tenyésztő és egy hormonmentes fenntartó-regeneráló táptalajt alkalmaztam. Az mN6M táptalajon 12%-kal több mikrospóra élte túl a tenyésztés első napját (P = 5%), mint a kontrollként használt táptalajon. A kalluszokból nagy mennyiségű növény regenerálása után termékeny DH vonalakat (ML-1,-2,-8,-15) és azok hibridjeit sikerült felnevelni. A létrehozott vonalak és hibridjeik alkalmas források lehetnek a mikrospóra indukción segítő kukorica gének további koncentrációjára és genetikai azonosítására.

A fluorescens in situ hibridizáció búza DNS jelenlétéit mutatta ki a kukorica kromoszómákon. A regenerált növények helyreállított zöld szintest termelése, valamint jelentősen megnövekedett mérete és vitalitása jelentettek morfológiaiág új (köztes) tulajdonságot. A regenerált növények kukorica és búza DNS egyedi és ismeretlen keverékét hordozzák, és számos lehetőséget nyújtanak további genetikai és stressz vizsgálatakra.
8. MELLÉKLETEK

M1. Irodalomjegyzék

9. KÖSZÖNETNYILVÁNÍTÁS

Köszönöm Dr. Mórocz Sándor és Dr. Dudits Dénes témavezetőknek a lehetőséget és szakmai segítséget, hogy a dolgozatban bemutatott témákkal foglalkozhattam, Dr. Heszky László tanszékvezetőnek a “Növénygenetika,- biotechnológia és növénynemesítés” doktori iskolában való részvétel lehetőségét.

Köszönettel tartozom Göntér Ildikónak az in situ hibridizációhoz, Lajtosné Vince Rozáliának és Becsei Magdolnának a kromoszóma- preparáláshoz, Dévényi Károlynának a statisztikai értékeléséhez és Búza Lajosnának az angol szövegek ellenőrzéséhez nyújtott segítségükért.

Köszönetet mondok a Gabonatermesztési Kutató Kht. Kukorica Nemesítési Igazgatósága munkatársainak, elsősorban Dr. Szél Sándor és Dr. Kálmán Lászlónak a szakmai lehetőségért, Dr. Lángné Molnár Mártának (MTA Mezőgazdasági Kutató Intézete, Martonvásár), értékes tanácsaiért és hogy lehetőséget biztosított az in situ hibridizációs vizsgálatokra, és Dr. Mark De Loose-nak (Rijksstation voor Plantenveredeling Belgium - VLAHON Project) a RAPD módszer ejsajátításához nyújtott sokrétű segítségért.

Dr. Sági Ferencnek, Dr. Pauk Jánosnak, Dr. Purnhauser Lászlónak és Dr. Bartók Tibornak köszönöm értékes, önzetlen szakmai segítségüket.

Az Országos Tudomány- és Kutatásfejlesztési Alap támogatta a szomatikus hibridizációs (OTKA 488), és a mikrospóra kísérelteket (OTKA T17139), valamint utazási ségítséget is nyújtott (OTKA 2046). Az "MHB Magyar Tudományért" Alapítvány a PhD képzéséhez nyújtott támogatást.