Új búza/árpa és búza/Agropyron introgressziós vonalak előállítása és azonosítása fluoreszcens in situ hibridizációval és molekuláris markerekkel

TÜRKÖSI EDINA

Gödöllő

2017
A doktori iskola

megnevezése: Növénytudományi Doktori Iskola

tudományága: Növénytermesztési és Kertészeti Tudományok

vezetője: Dr. Helyes Lajos
egyetemi tanár, az MTA doktora
SZIE, Mezőgazdaság- és Környezettudományi Kar
Kertészeti Technológiai Intézet

Témavezető: Dr. Lángné Dr. Molnár Márta
tudományos tanácsadó
az MTA doktora

Dr. Helyes Lajos iskolavezető
Dr. Lángné Dr. Molnár Márta témavezető
TARTALOMJEGYZÉK

Alkalmazott rövidítések jegyzéke ...6

1. BEVEZETÉS – célkitűzések ..7

2. IRODALMI ÁTTEKINTÉS ...10

2.1. A kenyérbúza evolúciója és génforrásai ...10

2.1.1. A búza taxonómiai besorolása és eredete .. 10

2.1.2. Az allopoliploidizáció hatása ...11

2.1.3. A búza génforrásai ...12

2.2. A búzába történő génátvitel idegen fajú keresztezéssel .. 13

2.2.1. A búza keresztezhetősége ...13

2.3. Árpából a búzába történő génátvitel ..15

2.3.1. Búza × árpa híbridek előállítása ... 15

2.3.2. Búza/árpa addíciós vonalak előállítása ...16

2.3.3. Búza/árpa transzlokációs vonalak előállítása .. 19

2.3.3.1. Transzlokációk indukálása ...19

2.4. A Thinopyrum nemzetség ...22

2.4.1. Thinopyrum fajok hasznosítása a búzanemesítési programokban ...23

2.4.2. Búza/Thinopyrum fajok közötti híbridek és részleges amfiploid előállítása26

2.4.3. Báza/Thinopyrum introgessziós vonalak előállítása ...27

2.4.4. Agropyron glael, a Thinopyrum intermedium és Thinopyrum ponticum keresztezéséből származó szintetikus híbrid..28

2.5. Kromoszómák azonosítása in situ híbridizációs technikával ..30

2.5.1. Fluoreszcens in situ híbridizáció (FISH) ..30

2.5.2. Genomi in situ híbridizáció (GISH) ..32

2.6. A búza gombabetegségei és a rezisztencia-nemesítés ..33

2.7. Molekuláris markerek használata az előnemesítési programokban ...35

2.7.1. SSR markerek ...36
2.7.2. STS markerek ..37
2.7.3. SCAR markerek ..38

3. ANYAG ÉS MÓDSZER ...39

3.1. Törzsoldatok és munkaoldatok ..39
3.2. Növényi anyag ...39
3.3. Molekuláris citogenetikai vizsgálatok ..41
 3.3.1. Citológiai dőrzspreparátum készítése ...41
 3.3.2. Próbajelölés ...42
 3.3.3. Genomi in situ hibridizáció (GISH és mcGISH) ...43
 3.3.4. Fluoreszcens in situ hibridizáció (FISH) ...45
3.4. SSR és STS markeranalízis ...45
 3.4.1. Az árpa telocentrikus kromoszómák azonosítása a búza/árpa diteloszómás addíciós vonalakban ...45
 3.4.2. Az RhtD1b allél kimutatása a 3HS.3BL/Bodri búza/árpa transzlokációs vonalakban ...46
 3.4.3. Molekuláris markeres vizsgálatok a búza/Agropyron (6DL.6DS-?St) terminális transzlokációs vonalaknál ..47
3.5. Növénynevelés fitotroni növénynevelő kamrákban ..48
3.6. Növénynevelés szántóföldi kísérleti parcellákon ...48
3.7. A 3HS.3BL/CS/Mv9kr1 transzlokációs vonal keresztezése az 'Mv Bodri' búzafajtával ...49
3.8. 'Asakaze'/‘Manasz' búza/árpa diteloszómás vonalak kiválogatása, azonosítása és agronómiai tulajdonságainak kiértékelése ...49
3.9. Az 'Asakaze'/‘Manasz' búza/árpa diteloszómás vonalak virágzási idejének kiértékelése ...50
3.10. Felvételezés, statisztikai analízis ...51
3.11. Az 'Asakaze'/‘Manasz' búza/árpa diteloszómás addíciós vonalak sóstressz-toleranciájának vizsgálata ...51
3.12. Mv9kr1 × Agropyron glael hibrid termesztett búzával keresztezett utód-generációk előállítása ...52
4. EREDMÉNYEK ÉS MEGVITATÁSUK..54

4.1. A búza/árpa diteloszómás addíciós vonalak kiválogatása és morfológiai
tulajdonságainak jellemzése ..54

4.1.1. Az 'Asakaze'/'Manasz' diteloszómás addíciós vonalak virágzási idejének
megfigyelése szántóföldi kísérletben ..69

4.1.2. Az 'Asakaze'/'Manasz' diteloszómás addíciós vonalak sóstressz-vizsgálata..... 70

4.1.3. A búza/árpa diteloszómás addíciós vonalak jellemzése ...71

4.2. A 3HS.3BL Robertsoni transzlokáció introgressziója egy modern martonvásári
búzafajtába ...75

4.2.1. Az utódvonalak citogenetikai azonosítása ..75

4.2.2. A 3HS.3BL/Bodri vonalak molekuláris markerek analízise ..77

4.2.3. A növények fenotípusának vizsgálata a martonvásári tenyészkertben 78

4.2.4. A 3HS.3BL/Bodri vonalak előállítása és vizsgálata ...80

4.3. Az Mv9kr1 × A. glael hibrid termesztett búzával keresztezett utódainak vizsgálata 82

4.3.1. Búza/Agropyron glael terminális transzlokációs vonal kiválogatása az 'Mv
Karizma' búzafajtával keresztezett F3 növények utódai közül..82

4.3.2. A búza/taarackbúza terminális transzlokációt (6DL.6DS-?St) hordozó vonalak
vizsgálata molekuláris markerekkel ...87

4.3.3. A búza × Agropyron glael hibrid 'Mv Karizma' búzafajtával keresztezett
utódnövényei közül szelektált terminális transzlokációt (6DL.6DS-?St) hordozó vonal
jellemzése ...90

4.5. ÚJ TUDOMÁNYOS EREDMÉNYEK ...95

5. KÖVETKEZTETÉSEK ÉS JAVASLATOK ... 96

6. ÖSSZEFoglalás ..98

7. Summary ..100

8. Mellékletek ...102

KÖSZÖNÉTNYILVÁNÍTÁS ..133
Alkalmazott rövidítések jegyzéke

Anti-Dig-Rhodamine – Anti-Digoxigenin –Rhodamine
biotin – biotin–11–dUTP
bp – bázispár
CSpH1b – Chinese Spring tavaszi búzafajta *ph1b* mutáns genotípusa
DAPI – 4’,6’–diamidino–2–fenilindol
digoxigenin – digoxigenin–11–dUTP
DS – dextrán–szulfát (25%-os)
EDTA – etilén–diamin–tetraecetsav
FISH – fluoreszcens *in situ* hibridizáció
FITC – fluoreszcine–5–izotiocianát
GISH – genomi *in situ* hibridizáció
LR – levélrozsdaf – rezisztenciagén
mcGISH – multikolor GISH
MQ víz – Milli–Q víz, ioncserélő gyantán megszűrt desztillált víz
NOR-régió – nukleólusz–organizáló régió (nucleolus organizer region)
PCR – polimeráz láncreakció (polymerase chain reaction)
Pm – lisztharmat – rezisztenciagén
QTL – mennyiségi jelleget meghatározó lokuszok (quantitative trait loci)
Rht – törpeségi (reduced height) gén
SDS – nátrium–dodecil–szulfát (10%-os)
SSC – trinátrium–citrát és nátrium–klorid oldat keveréke (saline–sodium citrate)
Sr – szárrozsda – rezisztenciagén
SF50 – formamid 50%–os oldata (solution formamide)
Th. – *Thinopyrum* genus
TNB – trisz–NaCl blokkelő puffer
Yr – sárgarozsdaf –rezisztenciagén
1. BEVEZETÉS

A világ egyik legnagyobb területen termesztett gabonaféléje a kenyérbúza (*Triticum aestivum* L.), vetésterülete mintegy 245-250 millió hektár. A búza fontos szerepet játszik az élelmiszerbiztonság fenntartásában. Az egyre gyarapodó emberiség 2050-re elérheti a 9 milliárdot, ezért ahhoz, hogy az igényeit ki lehessen elégtíteni, a termésmennyiség évenkénti 2%-os növekedését kellene biztosítani. Ez nagy kihívást jelent, mind a klímaváltozás negatív hatásai, mind pedig a termőterületek csökkenő minősége miatt. A termésnövekedés megvalósításának kulcsa, a magasszintű agrotechnika és az aratás utáni termésveszteség csökkentése mellett, olyan fajták nemesítése, amelyek kiemelkedő betegség-ellenállósággal és abiotikus stressz-rezisztenciával, illetve magasabb terméshozammal rendelkeznek.

A kenyérbúza genetikai variabilitásának növelésére új értékes gének és allélek bevitelére lenne szükség a búzával rokon termesztett és/vagy vad fajokból, amelyek gazdag értekértékeként szolgálnak a nemesítés számára. Ilyen jellegű törekvések már a XIX. században is voltak, kezdődően a búza-rozs (Wilson, 1875), búza-árpa (Farrer, 1904) és búza-kecskebúza (Kihara, 1937) keresztezéseken. Igazi áttörést jelentett az interspecifikus hibridizációban a kolchicin kezelés kidolgozása (Blakeslee és Avery, 1937), amely lehetővé tette a kromoszómaszám megduplázásával a fertílis amfiploidok előállítását. Az *in vitro* embriómentes technikák bevezetése (Murashige és Skoog, 1962) biztosította később a rokon fajok közötti keresztezések szélesebb körben történő elterjedését.

tarackbúzafajt már felhasználtak a kenyérbúza betegségekkel szembeni ellenállóságának javítására. A két legértékesebb génforrás a Thinopyrum (korábbi néven Agropyron) nemzetségből a Thinopyrum intermedium és Thinopyrum ponticum, elsősorban mert értékes rezisztenciagéneket hordoznak (levélorzsa-, szárrozsda- és lisztharmat-rezisztcencia gének) és ellenállók különböző abiotikus sztresszfaktorokkal szemben (szárazság-, szikes talajok), másodsorban alapgenomjuk (J és St genom) közeli rokonságban áll a termesztett búza A és D genomjával. A Thinopyrum fajokban rejlő lehetőségek kialakítása a búzanemesítés számára további keresztezésekkel és szelekcióval valósítható meg.

A faj- és nemzetség-keresztezések végső célja olyan introgressziós vonalak előállítása, amelyek stabilan öröklődnek, és amelyekbe lehetőleg csak hasznos géneket építenk be a vad fajokból. A búza genomból eliminálódott kromoszóma-szegmentumot leginkább egy homológ vagy homeológ kromoszómból beépült szegmentum tudja helyettesíteni, mivel egy adott funkcióért felelős gének sorrendje ezeken a kromoszómákon közel hasonló. A búza genomban beépült idegen fajú kromatin kimutatására és azonosítására molekuláris citogenetikai módszerek és molekuláris markerek állnak rendelkezésünkre. A fluoreszcens in situ hibridizációs technikával (FISH), repetitív DNS próbák alkalmazásával a búza és árpa kromoszómák egyedi mintázatuk alapján teljes bizonyossággal felismerhetők, míg a Thinopyrum nemzetségbe tartozó fajok többségénél a kromoszómák azonosítását célzó módszerek kidolgozása még folyamatban van.

1.1. CÉLKITŰZÉSEK

Kutatómunkám célja az árpából és a tarackbúzafajokból kedvező tulajdonságokat hordozó kromoszóma-szakaszok,-szegmentumok beépítése a termesztett búzába:

- Az 'Asakaze'/Manasz' búza/árpa diteloszómás addiciós vonalak kiválogatása, melyek a búza genom mellett csak egy pár árpa kromoszómakart hordoznak, majd ezek molekuláris citogenetikai módszerekkel történő elemzése, morfológiai és agronómiai tulajdonságainak jellemzése, a vonalak sótűrésének vizsgálata;

- A Martonvásáron korábban előállított búza/árpa hibridek utódvonaiban származó transzlokációs vonal (3HS.3BL) agronómiai tulajdonságainak javítása egy modern martonvásári búzafajtával történő keresztezéssel, amely genetikai alapanyagként felhasználható az előnemesítésben;
• Az *Agropyron glael*-ből (a *Thinopyrum intermedium × Thinopyrum ponticum* hibridje) a biotikus rezisztenciáért felelős kromoszómák vagy kromoszóma-szegmentumok beépítése a búzába, majd főleg gombabetegségekkel szemben ellenálló transzlokációs vonalak előállítása.
2. IRODALMI ÁTTEKINTÉS

2.1. A kenyérbúza evolúciója és génforrásai

2.1.1. A búza taxonómiai besorolása és eredete

A kenyérbúza (Triticum aestivum L.) a perjefélék (Poaceae) család Triticeae nemzetségsorozatának Triticum nemzetségébe tartozó növényfaj. A Triticeae fajok többsége Dél-kelet Ázsia, a Tigris és Eufrátesz folyók és a Földközi-tenger Közel-Keleti partvidéke által határolt, „Termékeny Félhold” néven ismert területről származik (Salamini és mtsai, 2002). Körülbelül 12000 évvel ezelőtt ezen a területen ment vége az árpa (Hordeum vulgare L.), az alakor (Triticum monococcum) és a tönke (Triticum turgidum) domesztikációja, így az emberi társadalom a vadászó-gyűjtögető életmódról áttért a mezőgazdasági termelésre (Kilian és mtsai, 2010). A Triticeae nemzetségsorozat fajainak egy része (kb. 80 növényfaj) diploid, míg a többségük allopoliploid, magukba foglalva különböző fajok diploid genomjait. A fajok alap kromoszomaszáma x=7 (Sakamura, 1918), a teljes genom 14 kromoszómából vagy ennek egész számú többszöröséből áll. Különböző ploidszintű fajok kromoszóma-párosodásának vizsgálata a meiózis során igazolta, hogy a poliploid fajok interspecifikus vagy intergererikus hibridizáció útján keletkeztek, melyet a kromoszómaszám megkettőződése követett (Kihara, 1919, 1924; Sax 1921, 1927).

hexaploid búzafajok eredeti anyai szülőpartnere (ezáltal citoplazmadonorja) a B genom (Aegilops speltoides), ezért a pedigrék és genomjelölések esetén Feldman (2001) a BBAADD jelölést javasolja.

2.1.2. Az allopiploidizáció hatása

Az allopiploidizáció új fajok kialakulását teszi lehetővé egyetlen lépésben, egy új taxon létrejöttét, amely genetikailag elkülönül a szülői genotípusoktól. Az újonnal kialakult allopiploid tulajdonképpen két vagy több különböző genom hibridje egyetlen sejtmagon belül. Az allopiploidizáció szükségessé tesz néhány genetikai és epigenetikai változást, ami befolyásolja a genomösszetételt és a gének expresszióját. Feldman és mtsai (1997) tanulmányai szerint az allopiploidok stabilizációjában két tényező játszik szerepet: (1) a szigorú igenomikus kromoszóma-párosodás a meiózis során biztosítja a magasabb fertilitást, ugyanakkor gátolt az egymással közeli rokonságban álló, homeológ genomokhoz tartozó kromoszómák párosodása (Sears, 1954; Morris és Sears, 1967); (2) a genetikai diploidizáció, amely során a duplikált gének nem, vagy csak kisebb mértékben expresszálódnak. Megállapították továbbá, hogy az alacsony kontrasztú, valószínűleg kódoló DNS szekvenciák, amelyek minden diploid Triticeae fajban megtalálhatók, a tetraploid fajok egyik, míg a hexaploid fajok két genomjából eliminálódtak. A Triticum-Aegilops szintetikus amfiploidoknál és a diploid szülőpartnereknél a közelmúltban végzett genomkutatások bebizonyították, hogy az allopiploidia által előidézett szekvencia eliminációk hamar bekövetkeznek a poliploid fajok keletkezése során (Feldman és mtsai, 1997; Liu és mtsai, 1998; Ozkan és mtsai, 2001).

1. ábra. Az allopiploid búza eredete
/Feldman (2005) nyomán/
2.1.3. A búza génforrásai

Harlan és Wet (1971) javaslatára a termesztett növények génforrásait genomösszetételük alapján három csoportba osztották. A termesztett búza elsődleges génforrásai közé tartoznak a vele homológ genomokat tartalmazó fajok (Friebe és Gill, 1996), ide soroljuk a hexaploid tájfajtákat, a termesztett tetraploid fajtákat (Triticum turgidum L. subsp. durum, BBAA), a durum és a termesztett búza A és D genomjának diploid donor fajait [Triticum monococcum L. (A\(^m\)A\(^m\)), Triticum urartu Tumanian ex Gandilyan (A\(^u\)A\(^u\)), Triticum boeticum Boiss. (AA), Aegilops tauschii Coss. (DD)]. Az elsődleges génforrásokkal létrehozott hibridek általában fertílesek, a meiózis során a homológ kromoszóma-párosodás következtében spontán rekombinációk jöhetnek létre. A búza másodlagos génforrásai közé azokat a Triticum és Aegilops fajokat soroljuk, amelyek legalább egyik genomja homológ a búzával. Ide tartoznak a tetraploid T. timopheevii (Zhuk.) Zhuk. ssp. timopheevii és a ssp. armeniacum (Jakubz.) (GGAA) van Slageren fajok, továbbá a Sitopsis szekcióba tartozó S genommal rendelkező Aegilops fajok, amelyek a búza B genomjával mutatnak hasonlóságot. Ezekből a fajokból már számos reziszntenciáját vittek át a termesztett búzába (Friebe és mtsai, 1996) (Ae. bicornis, Ae. longissima, Ae. sharonensis, Ae. searsii, Ae. speltoides). A másodlagos génforrások közé tartozó fajokkal létrehozott hibridekben problémák adódhatnak a kromoszómapatásodás során. Amennyiben a megtermékenyülés után endospermium nem fejlődik ki az embrió táptalajra szükséges helyezni. A búza harmadlagos génforrásai nem tartalmaznak a búzával homológ genomot, a meiózis során az idegenfajú kromoszómák búzakromoszómával való párosodása nem jön létre, ezért a géntranszfer csak speciális technikák alkalmazásával valósítható meg. Sok esetben célszerű az embriókultúra használata, a steril hibrid növény kromoszómaszámának kolchicinnel történő megkétszerezése vagy a búza szülőpartnerrel való visszakeresztezése. Ebbe
a csoportba termesztett és vad fajok tartoznak, többek között a *Hordeum, Secale, Thinopyrum, Pseudoroegneria, Agropyron, Dasypyrum* stb. nemzetségből.

2.2. A búzába történő génátvitel idegen fajú keresztezésszel

2.2.1. A búza keresztezhetősége

Az idegen fajú génátvitel sikereségéért meghatározó tényező a keresztezhetőség, az a tulajdonság, hogy két faj genotípusainak keresztezésével milyen hatékonysággal hozható létre F₁ hibridszem. Megfigyelték, hogy különböző búza genotípusok keresztezhetősége rokon fajokkal eltérő. Búzában a keresztezhetőségi jelleg kialakításában alapvető fontosságúak a keresztezhetőségi (Kr) gének. Az első részletes keresztezhetőségi vizsgálatokat Lein (1943) végezte és kimutatta, hogy e tulajdonság meghatározásában két locusszallélik különbsége játszik szerepet. A könnyen keresztezhető genotípusnál ezeket a recesszív allélokat *kr1kr1kr2kr2*-vel jelölte, ezeket az allélokat hordozó genotípusok keresztezhetősége 50 százalék

A széleskörű variabilitás a keresztezhetőség tekintetében, nemcsak a búzában, hanem a vele keresztezni kivánt fajok közötti genotípusokban is megtalálható, és ennek alapvető szerepe van a keresztezni kivánt genotípusok megválasztásában (Sharma, 1995).
A keresztezések sikerességét a környezeti tényezők is befolyásolják, mint például a hőmérséklet, páratartalom, fény. A búzafajták megtermékenyülése 20-25 °C hőmérsékleten és 60-70% relatív páratartalom mellett kedvező. Fajidegen pollen használata esetén a keresztezés sikeressége növelhető a hőmérséklet csökkenésével és a páratartalom növekedésével (Belea, 1986). Martonvásáron a búza × árpa keresztezések során 21°C-on tapasztálták a legnagyobb mértékű szemkötést. A környezet erősen befolyásolja az embrió és endospermium fejlődését is (Percy, 1986), az alacsony hőmérséklet lassítja az embrió fejlődését (Molnár-Láng és Sutka, 1994).

Interspecifikus és intergenerikus keresztezések esetén eltérő kromoszómászámú fajok keresztezése is lehetséges. Ebben az esetben általánosan elterjedt gyakorlat, hogy a nagyobb kromoszómászámú genotípus anyai partnerként használják a keresztezések során. Különböző búza-fajkeresztezések esetében a hibrídszemek teltek, de kisebbek, ha anyaként a nagyobb kromoszómászámú szülőt használjuk és az ilyen szemek csírázása is jobb (Belea, 1964). Reciprok keresztezések esetén, a hibrid szemek nagyobbak, de a nem elegendő táplálószövet miatt zsugorodottak és a csírázóképességük is gyengébb (Beaudry, 1951).

2.3. Árpából a búzába történő génátvitel

Két legfontosabb gabonafélénk, a búza és az árpa közötti keresztezések régóta állnak a kutatók érdeklődésének középpontjában. A nemesítés szempontjából a cél elsősorban az árpa kedvező bel tartalmi paramétereinek (jelentős élelmiszer-, kedvező aminosav-tartalom) átvitele a termesztett búzába, illetve minden olyan agronómiai tulajdonságért (só- és szárazságtűrés, bokrosodás stb.) felelős gén vagy QTL beépítése, amellyel növelhető a búza termésbiztonsága.

2.3.1. Búza × árpa hibridek előállítása

A két faj keresztezését megelőző kísérletekről már a huszadik század elején is beszámoltak (Farrer, 1904), de az első bizonyíthatóan sikeres keresztezést Kruse végezte el (1973), aki kísérleteiben az árpát használta anyai partnerként. További árpa/búza hibrídeket állítottak elő az 1980-as években (Clauss, 1980; Mujeeb-Kazi, 1981; Chen és mtsai, 1984; Lángné Molnár és mtsai, 1985; Shimada és mtsai, 1987). A hibrid növények sterilek voltak és a kromoszómakészletük megduplázására alkalmazott kolchicinkezelés sem volt sikeres, ezért a hibrídek búzával történő visszakeresztezésével próbálkoztak. Az utódnövényekben azonban az árpacitoplazma és a búzasejtmag interakciója miatt a virágokban a portokok helyén is termők fejlődtek (Islam és mtsai, 1981). Ezt a jelenséget pisztilloidiának nevezik. A hibridelőállítás során az első akadály az idegen pollennel történő megtermékenyülés. Ha létre is jön a

2.3.2. Búza/árpa addíciós vonalak előállítása

Addíciónak nevezzük az olyan kromoszómaszám-változást, amikor egy idegen fajból, nemzetségből kromoszómát vagy kromoszómákat építünk be a recipiens komplett kromoszómakészletébe (Sutka, 2004). A búza/árpa addíció az a kromoszómaszám-változás, amikor a búza teljes kromoszómakészletébe egy vagy egy pár árpakromoszómát építtünk be. Amennyiben egyetlen árpakromoszóma épül be a búzagenomba, akkor monoszómás, ha egy homológ kromoszómapár, akkor diszómás addícióról beszélünk. A diszómás addíciós vonalak a monoszómás vonalak öntermékenyítésével állíthatóak elő. A molekuláris markerek és a FISH technikák bevezetése előtt a beépített kromoszómák azonosítására a C-sávozást alkalmazták, amely a konstitutív heterokromatin eloszlását mutatja a kromoszómákon. A búza egységes C-sávos kariotípusát 1991-ben fogadták el, bár már a 70-es évek elején megkezdődtek a búza és a rokon fajok kromoszómáinak azonosítását (Hadlaczy és Belea, 1975). Először Caspersson és
mtsai (1968) figyelték meg, hogy ha a kromoszómákat kinakrin (Quinacrin) mustárral festik meg, ultraibolya fény alatt a kromoszómák jellegzetes fluoreszkáló sávok jelennek meg, ezt a technikát nevezték el Q-sávos festési technikának. Az árkromoszómák mai, a búzával való homeológán alapuló számozása nem egyezik a korábbi citológiai alapú kromoszómaszámozással. Linde-Laursen és mtsai (1997) a 7th International Barley Genetics Symposium-on az 1996-ban történt megegyezés alapján javasolták az árpakromoszómák új számozásai rendszerét. Ebben a rendszerben a búzakromoszómákkal való homeológáira alapozva az 1H felel meg a korábbi citológiai 5-ös kromoszómának, az 5H a 7-es, a 7H pedig az 1-es kromoszómának felel meg. A többi kromoszóma számozása változatlan maradt. A továbbiakban ezt a rendszert használatot az 1997 előtti irodalmak említésekor is.

<table>
<thead>
<tr>
<th>Triticum aestivum genotípus</th>
<th>Hordeum genotípus</th>
<th>A búza genomhoz hozzáadott árpakromoszóma</th>
<th>Hivatkozás</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Shinchunaga' (tavaszi, japán)</td>
<td>'Nyugoruden' (New Golden) (kétsoros, tavaszi, japán)</td>
<td>6H, 7H</td>
<td>Koba és mtsai, 1997</td>
</tr>
<tr>
<td>'Martonvásári 9 kr1' (Mv9kr1) (téli, magyar)</td>
<td>'Igri' (kétsoros, tavaszi, német)</td>
<td>2H, 3H, 4H, 7H, 1HS, 6HS, 1H/1HS+6H</td>
<td>Molnár-Láng és mtsai, 2007, Szakács és Molnár-Láng, 2007, 2009</td>
</tr>
<tr>
<td>'Asakaze' (fakultatív, japán)</td>
<td>'Manas' (hatkoros, űrszi, ukrán)</td>
<td>2H, 3H, 4H, 6H, 7H, 2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS, 7HL</td>
<td>Molnár-Láng és mtsai, 2012, Türkösi és mtsai, 2014, Türkösi és mtsai, 2016</td>
</tr>
<tr>
<td>'Chinese Spring'</td>
<td>Hordeum chilense</td>
<td>1H<sup>th</sup>, 4H<sup>th</sup>, 5H<sup>th</sup>, 7H<sup>th</sup></td>
<td>Miller és mtsai, 1981</td>
</tr>
<tr>
<td>'Shinchunaga' (tavaszi, japán)</td>
<td>Hordeum vulgare ssp. spontaneum OUH602</td>
<td>2H, 3H, 4H, 5H, 6H, 7H, 1HS, 5HS, 6HS, 6HL,</td>
<td>Taketa és Takeda, 2001</td>
</tr>
<tr>
<td>'Chinese Spring'</td>
<td>Hordeum marinum</td>
<td>1 H<sup>th</sup>, 2H<sup>th</sup>, 4H<sup>th</sup>, 5H<sup>th</sup>, 6H<sup>th</sup>, 7H<sup>th</sup></td>
<td>Islam és Colmer, 2008</td>
</tr>
</tbody>
</table>
2.3.3. Búza/árpa transzlokációs vonalak előállítása

Az addíciós vonalak csak átmenetet jelentenek a jóval stabilabb, transzlokációs vonalak előállításához, amelynek célja, hogy az idegen fajból minél kisebb kromoszóma-szegmentumot, lehetőleg a hasznos tulajdonságokért felelős génkomplexumokat vigyük át a búzába. A transzlokációk létrejöttének feltétele a kromoszómák törése a meiózis során, majd egy másik kromoszóma tört végével történő újraegyesülése. Kromoszómatörések létrejöhetnek spontán, illetve a kromoszóma-szerkezeti változásokat mesterségesen is előidézhetjük. Amennyiben az idegenfajú keresztezések olyan fajokkal történnek, amelyek a búzával homológ genomokat tartalmaznak, a meiózis során a búza és a rokon faj genomjai között természetes homológ kromoszóma-párosodás folyamán végbemenő crossing over következtében létrejöhetnek rekombinációt. A búza harmadlagos génforrásai körébe tartozó fajok esetében (ide tartozik az árpa is), amelyek nem tartalmaznak a búzával homológ genomokat, a meiózis során a búza és az idegen fajú kromoszómák között nem várható párosodás, majd rekombináció, ezért az ezekből a fajokból tervezett génátvitelhez más módszerek szükségesek (Lágné Molnár Márta, 2011).

2.3.3.1. Transzlokációk indukálása

A transzlokációk előállítására különböző módszerek állnak rendelkezésünkre, mint például az ionizáló sugárzás (Sears 1956; Szakács és mtsai, 2010) vagy a homeológ párosodás indukciója (Riley és Chapman 1958; Sears 1972; Griffiths és mtsai, 2006). A búzában találhatók olyan gének, amelyek elősegítik, míg más gének gátolják a kromoszóma párosodást (Sears, 1977). A meghatározó homeológ párosodást kontrolláló gén a Ph1, amely az 5B kromoszóma
hosszú karján található. A gén jelenlétében a párosodás csak a homológ kromoszómákra korlátozódik.

Sears (1977) a 'Chinese Spring' búzafajta kalászait röntgensugárzással kezelte, és a besugárzott növények pollenjével 5B monoszómás vonalakat keresztezett. Az utódok közül kiválogatott egy \(ph1b\) mutáns növényt (CSPh1b) amely a \(Ph1\) gén deléciójával keletkezett. Alkalmazása a nemesítési gyakorlatban mára széleskörűen elterjedt, mivel a \(Ph1\) gén hiányában a homeológ kromoszómák is párosodnak, habár kisebb mértékben mint a homológ kromoszómák. A CSPh1b mutáns vonalakat pollenadóként használva búza/árpa és búza/Hordeum chilense addíciós és szubsztitúciós vonalakkal történő keresztezések esetén, megfigyelték a búza/árpa illetve búza/Hordeum chilense kromoszómák párosodását. A \(ph1b\) mutáció alacsony, de szignifikáns mértékű párosodást és rekombinációt idéz elő a búza és Hordeum sp. kromoszómái között.

Normál 'Chinese Spring' és a CSPh1b mutáns keresztezéséből származó \(F_1\) hibrid besugárzássával Al-Kaff és mtsai (2008) öt új \(ph1b\) deléciós vonalat azonosítottak az utódok között. Giorgi (1978) a tetraploid 'Cappelli' durum búzafajtában indukált röntgensugárzással deléciós mutációt hozott létre a \(Ph1\) génben. A \(ph1c\) deléció a \(ph1b\)-hez hasonló pozícióban helyezkedik el az 5B kromoszóma hosszú karján. Gill és mtsai (1993) kimutatták, hogy mindkét mutáció rövid, kb. 3 Mb DNS-szakaszt érint, és átfedi egymást.

A gametocid rendszert a 'Chinese Spring'/Betzes' diszómás addíciós vonalak felhasználásával az árpakromoszómák térképezésére használták fel. Az 5H árpakromoszóma deléciós vonalak előállításánál 5H kromoszóma szerkezeti változásokat hordozó kromoszómákat

2.4. A Thinopyrum nemzetség

2.4.1. Thinopyrum fajok hasznosítása a búzanemesítési programokban

módon a stabilan beépített *Th. ponticum* kromatin jelenléte lehetővé teheti a sötűrés javítását a termesztett búzában.

2. **táblázat.** Fontosabb *Thinopyrum* fajok, elnevezésük szinonímái, kromoszómaszámuk és ploidszintjük (Wang és mtsai, 2014 nyomán; a búzával hibridizált fajok vastagon szedve).

<table>
<thead>
<tr>
<th>Jelenlegi fajnév</th>
<th>Szinonima</th>
<th>Kromoszómaszám</th>
<th>Ploidszint</th>
<th>Genom-összetétel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinopyrum bessarabicum (Savul. & Rayss) A. Löve</td>
<td>Agropyron bessarabicum Savul. & Rayss</td>
<td>14</td>
<td>diploid</td>
<td>J⁶ vagy E⁸</td>
</tr>
<tr>
<td>Thinopyrum distichum (Thunb.) A. Löve</td>
<td>Agropyron distichum (Thunb.) P. Beauv Elytrigia disticha Prokudin ex A. Löve</td>
<td>28</td>
<td>tetraploid</td>
<td>JE vagy E¹E²</td>
</tr>
<tr>
<td>Thinopyrum junceiforme (Á. Löve & D. Löve) A. Löve</td>
<td>Agropyron junceum ssp. boreoatlanticum Simonet & Guinochet</td>
<td>28</td>
<td>tetraploid</td>
<td>JE vagy E¹E²</td>
</tr>
<tr>
<td>Thinopyrum junceum (L.) Á. Löve</td>
<td>Agropyron junceum (L.) P. Beauv Thinopyrum runemarkii Á. Löve</td>
<td>42</td>
<td>hexaploid</td>
<td>JJE vagy EE²E³</td>
</tr>
<tr>
<td>Thinopyrum elongatum (Host) D.R. Dewey</td>
<td>Agropyron elongatum (Host) P. Beauv; Triticum elongatum, Lophopyrum elongatum (Host) Á. Löve</td>
<td>14</td>
<td>diploid</td>
<td>E vagy E²</td>
</tr>
<tr>
<td>Thinopyrum curviflorum (Lange) D.R. Dewey</td>
<td>Elymus curviflorum (Lange) Melderis</td>
<td>28</td>
<td>tetraploid</td>
<td>EE vagy J³J⁴</td>
</tr>
<tr>
<td>Thinopyrum ponticum (Podp.) Barkworth & D.R. Dewey</td>
<td>Agropyron elongatum (Host) P. Beauv.; Elytrigia pontica (Podp.) Holub; Lophopyrum ponticum (Podp.) Á. Löve</td>
<td>70</td>
<td>dekaploid</td>
<td>EEEESt vagy JJJ⁴St⁴</td>
</tr>
<tr>
<td>Thinopyrum scirpeum (K. Presl) D.R. Dewey</td>
<td>Agropyron scirpeum K. Presl; Lophopyrum scirpeum (K. Presl) Á. Löve</td>
<td>28</td>
<td>tetraploid</td>
<td>EE vagy J⁷J⁸</td>
</tr>
<tr>
<td>Thinopyrum intermedium (Host) Barkworth & D.R. Dewey</td>
<td>Agropyron intermedium (Host) P. Beauv; Elytrigia intermedia (Host) Nevski</td>
<td>42</td>
<td>hexaploid</td>
<td>EE² St vagy J²J⁴</td>
</tr>
<tr>
<td>Thinopyrum gentryi (Melderis) D.R. Dewey</td>
<td>Agropyron gentryi Melderis Elytrigia intermedia ssp. gentryi (Melderis) Á. Löve</td>
<td>42</td>
<td>hexaploid</td>
<td>EE²St vagy ESt</td>
</tr>
<tr>
<td>Thinopyrum podperae (Nábelek) D.R. Dewey</td>
<td>Agropyron podperae Nábelek Elytrigia intermedia ssp. podperae (Nábelek)</td>
<td>42</td>
<td>hexaploid</td>
<td></td>
</tr>
<tr>
<td>Thinopyrum nodosum (Nevski) D.R. Dewey</td>
<td>Agropyron nodosum Nevski; Lophopyrum nodosum (Nevski) Á. Löve</td>
<td>28</td>
<td>tetraploid</td>
<td>ESt</td>
</tr>
<tr>
<td>Thinopyrum flaccidifolium</td>
<td>Agropyron elongatum var. flaccidifolium (Boiss. & Heldr.) Elytrigia flaccidifolia (Boiss. & Heldr.) Holub</td>
<td>28</td>
<td>tetraploid</td>
<td>EE vagy E¹E²</td>
</tr>
<tr>
<td>Thinopyrum sartorii</td>
<td>Agropyron sartorii (Boiss. & Heldr.) Elytrigia sartorii (Boiss. & Heldr.)</td>
<td>28</td>
<td>tetraploid</td>
<td>JE vagy E¹E²</td>
</tr>
<tr>
<td>Thinopyrum pycnanthum (Goder.) Barkworth</td>
<td>Agropyron pycnanthum (Goder.) Godr. & Gren. Elytrigia pycnantha (Goder.) Á. Löve</td>
<td>42</td>
<td>hexaploid</td>
<td>SP²E³</td>
</tr>
<tr>
<td>Thinopyrum pungens (Pers.) Á. Löve</td>
<td>Agropyron pungens (Pers.) Roem. & Schult, Elytrigia pungens (Pers.) Tutin</td>
<td>56</td>
<td>oktoploid</td>
<td>EStS²P, EStL²P</td>
</tr>
</tbody>
</table>

24

Az évelő *Triticeae* fajok egy része, például a *Thinopyrum bessarabicum* (Manyowa és Miller, 1991) magasabb Al és Mn toleranciát mutat a termesztett búzánál. Az 5Jb kromoszómát hordozó addíciós vonalak, illetve az 5Jb/6Jb transzlokációs vonalak esetén nagyobb mértékű Al és Mn toleranciát figyeltek meg mint a búzánál, ami arra enged következtetni, hogy ezek a kromoszómák a fémtoleranciáért felelős géneket hordoznak.
2.4.2. Búza/Thinopyrum fajok közötti hibridek és részleges amfiploid előállítása

A búza és tarackbúza közötti amfiploidok, amelyek az F₁ hibridek kolchicinnel történő kezelése vagy spontán kromoszóma duplikációval jöttek létre, amellett, hogy lehetőséget adnak a donor fajok és a recipiens búza genomok hasonlóságának vizsgálatára, alapanyagként szolgálnak hasznos tulajdonságok átvitelére célzó introgressziós vonalak állományának előállítására. Az amfiploidok kromoszómaszámnak redukálásával jönnek létre a részleges amfiploidok. A nemesítési programok egyik célja az évelő jelleg beépítése a búzába, amely során a diploid Th. elongatum, és a poliploid Th. ponticum és Th. intermediate fajokból származó kromoszómák biztosíthatják az évelő jellegre. Ebben az esetben, ha a búza szülő hexaploid, az amfiploid legalább 56 kromoszómával rendelkezik. Az évelő jelleg és robusztus évelő habitus megfigyelhető a részleges amfiploidok esetében, amelyekben a búza: tarackbúza kromoszómák aránya változó lehet (Ceoloni és mtsai, 2015). Az MT-2 vonal esetében, amely egy T. durum/Th.intermedium dekaploid amfiploidból származik, kromoszóma eliminációt követően genomja (2n=56) körülbelül 30 Thinopyrum kromoszómát és 26 búzakromoszómát tartalmazott. Ezzel szemben, az OK-906 és ‘Agrotana’ vonalak, 40 búzakromoszómával és csak 16 Thinopyrum kromoszómával rendelkeznek és nem mutatnak évelő jelleget (Jones és mtsai, 1999). Minden esetben számos kerestezési ciklus és erős szelekción szükséges, hogy a kívánt tulajdonság megfelelő stabilitást mutasson.

A dekaploid Th. ponticum és a hexaploid Th. intermediate/búza hibridekből származó részleges amfiploidok általában egyaránt 56 kromoszómával rendelkeznek. Ezekben a növényekben nem minden esetben van jelen a teljes búzagenom, búza/Thinopyrum transzlokációk jöttek létre vagy homeológ Thinopyrum kromoszómák helyettesítik a hiányzó búzakromoszómákat (Oliver és mtsai, 2006; Sepsi és mtsai, 2008). A részleges amfiploidokban
összesen 6 különböző homeológ genom (A, B, D, J, JSt, St) van jelen és a növényekben gyakran a különböző genomok közötti transzlokációk figyelhetők meg (Han és mtsai, 2004).

Számos búza/Thinopyrum teljes vagy részleges amfiploid felhasználható rezisztenciágének expressziójának vizsgálatára a recipiens búza genomban. Ezek a rezisztenciágének kitűnő ellenállóságot biztosítanak különböző gomba- és vírusbetegségekkel szemben, mint például levéloroszda, szárrozsdá, sárgarozsdá, lisztharmat, árpa sárga törpülés (BYDV), búza csíkos mozaik (WSMV) és ennek vektora, az Aceria tosichella ellen (Oliver és mtsai, 2006; Li és Wang, 2009; Chang és mtsai, 2010b; Wang, 2011). Az amfiploidok egy része, például a durum és kenyérbúza Th. elongatum, Th. bessarabicum vagy Th. distichum fajokkal létrehozott amfiploidjai kitűnő toleranciát mutattak különböző abiotikus stresszerekkel, különös tekintettel a magas sótartalommal szemben (King és mtsai, 1996; Colmer és mtsai, 2006; Marais és mtsai, 2014).

2.4.3. Búza/Thinopyrum introgressziós vonalak előállítása

A nagy mennyiségű idegen fajú kromatint hordozó vonalak általában nem megfelelőek a gyakorlati növénytermesztés számára, de kétségtelenül potenciális alapanyagként szolgálnak olyan introgressziós vonalak előállítására, amelyekben csak a kívánt tulajdonságokért felelős gének vannak jelen. A vad Triticeae fajokból történő génátvitel az utóbbi években jelentős eredményeket ért el a molekuláris genetika, citogenetika és genomikai módszerek fejlődése következtében. Mivel ezek a fajok nem rendelkeznek a búzával teljesen homológ genommal vagy genomokkal, széleskörű módszereket alkalmaztak transzlokációk és rekombinációk indukálására a búza és idegen fajú kromoszómák között. A kromoszóma-mérnökség korai szakaszában sugárzással indukált levéloroszda rezisztens búza/Agropyron elongatum transzlokációkat állítottak elő (Sharma és Knott, 1966; Knott, 1968). Az intergenomikus homeológ párosodás indukálása a Ph1 mutáns gén a búzából és durumbúzából történő átvitelével hódított teret (Sears, 1977; Giorgi, 1983). Néhány esetben a szövettenyészet által indukált töréseket (Banks és mtsai, 1995) és az Aegilops speltoides búza Ph1 gén hatását gátló Ph1 gén(eke)t (Wang és mtsai, 2003) hasznosították az árpa sárga törpülést okozó vírussal szembeni rezisztencia és a sótűrés átvitelére a Th. intermedium 7-es kromoszóma-csoportjáról (7Ai-1) és a Th. junceum 5-ös kromoszómacsoportjáról (AJDaj5). Más esetekben a potenciális genetikai anyag spontán transzlokációk formájában jött létre, a vad Triticeae fajokban megtalálható homeológ párosodást elősegítő gének aktivitása következtében, ami úgy tűnik bizonyos mértékben ellensúlyozza a búza Ph génjeinek hatását (Ceoloni és mtsai, 2015).

A Th. intermedium és Th. ponticum J, illetve St alapgenomok búza A és D genomjával való hasonlóságuk miatt a legalakalmazabsabb a búzanemesítési programokban való felhasználásban. A
Thinopyrum fajokból kompenzáló transzlokációk előállításával főleg betegség-rezisztenciát sikerült átvinni a termesztett búzába. *Th. intermedium* kromoszóma-szegmentumokból származó rozsda-rezisztenciagének építettek be a búzagenomba, mint például az *Sr44* (eredetileg *SrAgi*, McIntosh és mtsai, 1995), amely rezisztenciát biztosít a Ug99 rasszkomplexel szemben (Pretorius és mtsai, 2010). Ennek az előállításához a 7Ai (vagy 7J) addíciós vagy szubsztitúciós vonalat használták fel, melyből előállították egy 7DL.7JS (=7DL.7A-1S) kompenzáló Robertsoni transzlokációt (Liu és mtsai, 2013).

A *Th. ponticum*-ből származó transzlokációk közül kiemelkedő jelentőségű az *Lr24* és *Sr24* rezisztenciagének átvitele. Új búzajáratokat állítottak elő, amelyek egy spontán búza/ *Th. ponticum*, mint például a liszt és a sárga pigmentációs Yp gén kapcsoltsága az *Lr19* génnek közötti kapcsoltság előnyös tulajdonságnak tekinthető, a száraztésztagyártás során viszont a magas sárga pigment tartalom növeli a termék esztétikai értékét (Li és mtsai, 2008 és az ott felsorolt referenciák).

2.4.4. *Agropyron glael*, a *Thinopyrum intermedium* és *Thinopyrum ponticum* keresztkertéséből származó szintetikus hibrid

Nikolai V. Cicin szovjet botanikus, genetikus és növénynemesítő a XX. század első felében a Szovjet Tudományos Akadémia keretein belül *Triticum/Agropyron* és *Agropyron/Agropyron* keresztkertésével és hibridek előállításával foglalkozott. A *Thinopyrum intermedium* és *Thinopyrum ponticum* keresztkertésével, az 1930-as években állította elő az *Agropyron glael*

Cicin (1979) a hibridekből aneuploid növényeket is létrehozott, melyek a szülőknél 1-3 kromoszómával kevesebbet vagy többet tartalmaztak. Az *A. glael* és *A. elongatum* könnyen keresztezhetoek egymással, a szemkötés magas. A hibridek szemei aszottak voltak, de jólfejlett embrióval rendelkeztek. A szemek csírázási képessége jó, a növények nagy termőképességgel és jó bokrosodással rendelkeztek. Az *F1* hibridek heterogének voltak a bokrosodás, a növénymagasság és a kalásmértéktől függően. Az *A. glael* hibrídnövények magassága 126-149 cm között volt, kaláshosszuk 19,2-25,2 cm, a kalászok 15-17 kaláskából álltak. Magasságuk köztes volt, kalászuk lazább, hosszabb és gyengébb fertilitású a két szülőpartnerhez viszonyítva. A hibridek 56 kromoszómával rendelkeztek (Cicin, 1979). A meiózis során a kromoszómák 21-28 bivalens formát alkottak. A hibrid növények ugyanúgy, mint a szülő partnerek évelők voltak, jól tűrték az átültetést és a klónozást, többségük a leírójuk szerint több mint 20 évig is fennmaradt.

2.5. Kromoszómák azonosítása in situ hibridizációs technikával

2.5.1. Fluoreszcens in situ hibridizáció (FISH)

Napjainkban a radioaktív izotópokkal történő jelölés helyett, a fluorokrómokkal (fluoreszcsein, rhodamine) történő jelölést alkalmazzák, melyek fluoreszcens mikroszkópból egyszerűen detektálható mintázatot adtak (Jiang és Gill, 1994). A próbajelölés lehet direkt jelölés, amely esetben az azonosítani kívánt kromoszóma denaturált DNS-éhez a fluorokrómokhoz kapcsolt nukleotidok hibridizálnak, vagy indirekt jelölés, amikor a próbaként

2.5.2. Genomi in situ hibridizáció (GISH)

introgressziós vonalakban az idegen fajból származó kromatin kimutatására, poliploid fajokban a genomok megkülönböztetésére (Molnár és mtsai, 2009).

2.6. A búza gombabetegségei és a rezisztencia-nemesítés

A búzát termesztése során számos biotikus stresszhatás éri, melyek a betakarítható termés mennyiségét és minőségét kedvezőtlenül befolyásolják (McIntosh és mtsai, 1977). A búzát világszerte három roszdafaj veszélyezteti. Magyarországon mindhárom előfordul, de a leggyakrabban diagnosztizált veszélyeztető faj a rózsda (Puccinia triticina Eriks.) az asszimilációs felület csökkentése és élősködő életmódja miatt, járványos években 20-50%-kal is csökkentheti a termést. A sárgarozsda (Puccinia striiformis West.) a csapadékosabb klímájú országok jelentőségben részét járjásban meglehetősen ritkán jelentkezik, azonban az általa okozott termésveszteség jelentőségét is mérték. A szárrozsda (Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henne.) a leggyakrabban diagnosztizált veszélyeztető faj, ha április végén, május elején szeles, csapadékos, fulledt meleg időjárás alakul ki, akkor a búza és a búzás feldolgozásának esetén 100%-os termésveszteséget okozhat. A nekrotórf és nekrotórf kórokozók, amelyek közé tartozik a Fusarium ssp. is, fitotoxinjaikkal gyengítik a gazdanövényt, ami az asszimilációs felületi nekrotizálódását követően termésveszteség formájában nyilvánul meg. A kalászfuzárium (Fusarium graminearum Schwabe, Fusarium culmorum (W.G.Sm.) Sacc.) esetében, a kórokozók által termelt toxinok emberi fogyasztásra alkalmatlannak teszik a terményt. A biotróf és nekrotórf kórokozók ellen az egyik leghatásosabb védekezési mód a
rezisztens fajták nemesítése, mivel a betegségek által okozott termésveszteség mértéke a környezeti hatások mellett nagy mértékben függ a gazdanövény ellenálló képességétől is (Szunics és Szunics, 2010; Vida és mtsai, 2011). Egy adott rezisztenciagént tartalmazó, nagy területen termesztett fajták egy új virulens rassz megjelenésekor súlyos károkat szenvednek (Mesterházy, 2006). A biotikus rezisztencia fejlesztésében egyes levélbetegségek esetében a génpiramidálási kutatások hozhatnak átútő eredményeket (Láng és Bedő, 2006).

A búzával rokon, termesztett és vad fajokból sikerült több rezisztenciagént beépíteni a modern búzafajtákba. Genetikai diverzitásuknak köszönhetően, főleg a vad fajokat használták génforrásként rezisztencia kialakítására a termesztett búzában. Eddig különböző kecskебúza (Aegilops) (Ae. umbellulata Zhuk. − Lr9; Ae. speltoides – Lr35, Lr47, Lr51, Lr66, Sr32, Sr39 és Sr47; Ae. tauschii – Lr39, Lr40, Sr33, Sr45 és Sr46; Ae. kotschyi Boiss. – Lr54; Ae. sharonensis Eig – Lr56; Ae. triuncialis (L.) Á. Löve – Lr58; Ae. peregrina (Hackel in J. Fraser) Maire & Weiller – Lr59; Ae. geniculata Roth – Sr33; Ae. ventricosa Tausch – Sr38; Ae. comosa Sm. in Sibth. & Sm., Sr38), továbbá tarackbúza (Thinopyrum) (Th. ponticum (Podp.) Barkworth & D. R. Dewey – Lr19, Lr24, Lr29, Sr24, Sr25, Sr26, Sr43 és Sr44) fajokból építettek be sikeresen levélrozsdával (Lr) és szárrozsdával (Sr) szemben ellenállóságot biztosító géneket. Néhány búzába átült rezisztenciagégen a Secale (S. cereale L. – Lr25, Lr26, Lr45, Sr27, Sr31 és Sr50), valamint a Triticum (T. durum sp. dicoccoides – Lr53, Lr64 és Sr2; T. monococcum – Lr63, Sr21, Sr22 és Sr35) nemzetséghez tartozó fajokból származik. A sárgarozsda ellenállását S.cereale (Yr9), T. turdium (Yr15), Ae. tauschii (Yr24) és Haynaldia villosa (Yr26) fajokból származó rezisztenciagénekkel javították (Purnhauser, 2006; Komugi, 2015).

Jelenleg a búzameszesítésben a kalászfuzárium okozza a legsúlyosabb károkat. A termésveszteség mellett a Fusarium nemzetsége bejutott gombafajok által termelt toxinok már viszonylag kisméretű járvány esetén is olyan mennyiségű toxin-felhalmozódáshoz vezethetnek, amelyek az adott termést emberi és állati fogyasztásra alkalmatlanná teszik (Mesterházy, 2006). Az ellene való védekezést nehezíti, hogy a fuzárium-rezisztenciát több genetikai faktor együttesen határozza meg, melyek hatását a környezeti tényezők is nagymértékben befolyásolhatják (kvantitatív tulajdonság). A hatékony agrotechnika és a kémiai védekezés nem biztosíthatanak védelmet a kalászfuzárium ellen, ezért a fajták toleranciájának növelése jelenti a legjobb megoldást (Cai és mtsai, 2005). A kalászfuzáriummal szemben kétféle rezisztenciát különböztetünk meg: I. típusú (a fuzárium behatolásának mértéke) és II. típusú rezisztencia (a fuzárium kalászorsón belüli terjedésének a mértéke), amelyek adják a növény szántóföldi rezisztenciáját (Puskás, 2013). Egy adott genotípus ellenállóságának kialakításában a két rezisztenciatípus közel azonos jelentőségű (Bai és Shaner, 2004). A termesztett búza esetében csak kevés részleges ellenállóságot biztosító génforrást azonosítottak, mint például a 'Sumai 3'

2.7. Molekuláris markerek használata az előnemesítési programokban

Az utóbbi évtizedekben kifejlesztett DNS markerekre alapozott módszerek használata jelentős áttörést jelent a rezisztenciagének piramidálásához szükséges idő és költségek csökkentéséhez. Ráadásul, a markerek használata megbízhatóbb, mert nem befolyásolják a környezeti hatások. Továbbá előny, hogy a markerekre alapozott szelekciós technikákkal előállított genetikai anyagok nem minősülnek transzgénikusnak (GMO).

A genetikai vagy DNS alapú markereket, mint például az RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA), SSR (simple sequence repeats)
és AFLP (amplified fragment length polymorphism) rutinszerűen használják a növények űkológiai, evolúciós, taxonómiai, filogenetikai és genetikai vizsgálataira. Ezek a technikák széleskörűen használtak, az előnyeik és hátrányaik jól ismertek. Az utóbbi években az alaptechnikák kombinációjából kidolgozott új módszerek hódítottak teret.

Egy populáció egyedeinek genomjában előforduló, egy nukleotidot érintő variáció SNP néven ismert (single nucleotide polymorphism). A genomban leggyakrabban előforduló markerek, előfordulásuk és eloszlásuk változó lehet a fajok között és a fajokon belül is. Az átfogó genetipizálási módszerek, mint a DNS chip-ek és allél specifikus PCR különösen hasznossá teszik az SNP-ket molekuláris markerekként. Sokoldalúan hasznosíthatók például fajon belül a fajták azonosítására, és nagy sűrűségű genetikai térképek készítésére.

A CAPS (cleaved amplified polymorphic sequences) marker technika biztosítja a térképezett RFLP markerek DNS szekvenciáinak felhasználását PCR alapú markerek fejlesztésére, kiiktatva a DNS blottot (Komori és Nitta, 2005). A CAPS markereket emiatt gyakran nevezik PCR-RFLP markereknek (Konieczny és Ausubel, 1993).

A Diversity Arrays Technology (DArT) egy olyan technológia, ami lehetővé teszi genetikailag polimorf markerek előállítását. A DArT egy szekvencia független, nagy áteresztőképességű módszer, amellyel több ezer markert lehet azonosítani, akár egyetlen kísérlet során. A DArT markerek két alléllal rendelkeznek és dominánsak vagy kodominánsak is lehetnek. A DArT ujlenyomatok sikeresen felhasználhatók a nemesítési folyamat hatékonyabbá tételeben, a termeszttetted fajok és vad rokonaik genetikai diverzitásának meghatározásában (Wentzl és mtsai, 2004).

2.7.1. SSR markerek

fordulnak elő, mint a GT típusúak. Hasonló eredményekről számoltak be több fontos gabanonövény esetében mint például a búza (Plaschke és mtsai, 1995; Röder és mtsai, 1995), rizs (Wu és Tanksley, 1993) vagy kukorica (Gupta és Varshney, 2000). A trinukleotid ismétlődések közül árpában leggyakrabban a következők fordulnak elő a (CCG)ₙ, (AGG)ₙ and (AGC)ₙ, miközben a tetranukleotidok között a (ACGT)ₙ és (ACAT)ₙ motívumok a leggyakoribbak (Thiel és mtsai, 2003).

2.7.2. STS markerek

2.7.3. SCAR markerek

3. Anyag és módszer

3.1. Törzsoldatok és munkaoldatok

20×SSC: 3M NaCl, 0,3M C₆H₅Na₃O₇·2H₂O (trinátrium-citrát dihidrát) (pH 7,0)

10×PBS: 137 mM NaCl, 27 mM KCl, 80 mM Na₂HPO₄, 15 mM KH₂PO₄ (pH 7,0)

TNB: 0,1M Tris-HCl, 150mM NaCl, 0,5% Blocking Reagent (Roche)

Munkaoldatok (mindig frissen készítve):

2×SSC (1000ml): 900 ml MQvíz + 100 ml 20×SSC

4×SSC-Tween (500ml): 400 ml MQvíz + 100 ml 20×SSC +2,5 ml 10% Tween20

1×PBS (1000 ml): 900 ml MQ víz + 100 ml 10×PBS

paraformaldehid (50 ml): 50 ml MQ víz + 2g paraformaldehid, + 8 μL 8M NaOH (pH 7,4)

etanol-sorozat: 70%, 90%, 100% etanol

pepszin: 1 mg/ml 10 mM HCl-ben oldva (pH 7,5)

RNáz: 5 mg/ml 2xSSC-ben oldva

3.2. Növényi anyag

Kísérleteinkben a következő növényi anyagokat vizsgáltuk:

- Búzafajták ('Asakaze', 'Chinese Spring', 'Mv Bodri', 'Mv Karizma'), Mv9kr1 búzatörzs, Nannong 02Y23 búzavonal
- Árpafajták: ('Manasz', 'Betzes')
- Tarackbúza-fajok: Pseudoroegneria spicata (St genom), Thinopyrum bessarabicum (Jb genom), Thinopyrum elongatum (E) és Thinopyrum intermedium (Jj 'St)

Genetikai anyagok:

- 'Asakaze'/ 'Manasz' búza/árpa diszómás addíciós vonalak (2H, 3H, 4H, 6H, 7H)
- 'Chinese Spring'/Betzes' búza /árpa 3HS.3BL centrikus fúziós vonalak
- Búza/Agropyron glael hibridek utódvonalai
A használt növényi anyagok genomösszetételét, származását és jellemzőit a 3. táblázatban foglaltam össze.

3. táblázat. A kísérletekben használt növényi anyagok.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Származás</th>
<th>Jellemzők</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticum aestivum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martonvásári 9 kr1 (Mv9kr1)</td>
<td>Martonvásár</td>
<td>őszi búzatörzs, rozzsal jól keresztezhető (Molnár-Láng és mtsai, 1996)</td>
<td></td>
</tr>
<tr>
<td>'Asakaze'</td>
<td>Japán</td>
<td>fakultatív, szálkás</td>
<td></td>
</tr>
<tr>
<td>'Chinese Spring'</td>
<td>Kina</td>
<td>tavaszi, tar</td>
<td></td>
</tr>
<tr>
<td>'Mv Bodri'</td>
<td>Martonvásár</td>
<td>őszi, szálkás, korai érésű, féltörpe, állami elismerés éve 2008.</td>
<td></td>
</tr>
<tr>
<td>'Mv Karizma'</td>
<td>Martonvásár</td>
<td>speciális minőségű járóbúza, szálkás, állami elismerés éve 2009.</td>
<td></td>
</tr>
<tr>
<td>Nannong 02Y23</td>
<td>Kina</td>
<td>búzatörzs</td>
<td></td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>L. subsp. vulgare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Manasz'</td>
<td>Ukrajna</td>
<td>őszi, hatsoros</td>
<td></td>
</tr>
<tr>
<td>'Betzes'</td>
<td>Németország</td>
<td>tavaszi, kétsoros</td>
<td></td>
</tr>
</tbody>
</table>

Búza/árpa ('Asakaze'/Manasz') addíciós vonalak

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2H, 3H, 4H, 6H, 7H</td>
<td>Martonvásár</td>
<td>eltérő morfológia (Molnár-Láng és mtsai, 2012a)</td>
<td></td>
</tr>
</tbody>
</table>

Búza/árpa ('Chinese Spring'/Betzes') transzlokációs vonal

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3HS.3BL transzlokációs vonal</td>
<td>Martonvásár</td>
<td>szálkacsonkos és tar (Molnár-Láng és mtsai, 2000a)</td>
<td></td>
</tr>
</tbody>
</table>

Tarackbúza fajok, búza/Agropyron glael utódvonalak

Pseudoroegneria spicata	Kanada	T914 (USDA)
Thinopyrum bessarabicum	Oroszország	W6 10232 (USDA)
Thinopyrum elongatum	Nottingham	
Thinopyrum intermedium	Nottingham	
Mv9kr1/A. glael hibrid utódai	Martonvásár	nem évelők (Kruppa és mtsai, 2016)
3.3. Molekuláris citogenetikai vizsgálatok

3.3.1. Citológiai dörzpreparátum készítése

A vizsgált növényi anyagok szemeit csapvíz és desztillált víz 1:1 arányú keverékével benedvesített szűrőpapíron, Petri-csészében csíráztattuk, szobahőmérsékleten (2. ábra). A csírázásnak indult szemeket 72 órán keresztül 4 °C-on tároltuk, a gyökércsúcs-merisztéma sejtek osztódásának leállítása és a sejtosztódások szinkronizálása céljából, majd a Petri-csészéket 26 °C-ra beállított termosztátba helyeztük, a mitotikus sejtosztódás újraindításához kb. 24-26 órán át. A növényekről 1-1,5cm hosszúságú gyökereket jeges desztillált vízbe gyűjtöttünk, ahol minimum 26 órán keresztül tároltuk. A citológiai számmal ellátott szemeket a továbbiakban tápkockába ültettük, a növények felnevelése céljából. A hidegkezelést követően az összegyűjtött gyökereket abszolút alkohol és jégecet 3:1 arányú keverékében fixáltuk 4-5 napig 37 °C-on. A gyökércsúcsok megfestését 90-120 percig 1%-os kárminecetsavval végeztük, majd a növényi anyagot felhasználásig frissen elkészített fixáló oldatban -20°C-on tároltuk felhasználásig.

2. ábra. Egyedi citológiai számmal ellátott, Petri csészében csíráztatásra előkészített szemek ('Asakaze'/Manasz' 3H diszómás növényről származó szemek).
Preparátumkészítéshez előzetesen etanolban zsírtalanított Superfrost tárgylemezeket használtunk. A gyökércsúcsokból a sejteket kiszabadítottuk 45%-os ecetsavoldatban, a tárgylemen szétnyomtuk, majd a mitotikus dörzspreparátumokat fáziskontraszt-mikroszkóp alatt vizsgáltuk. A megfelelő minőségű és vélhetően teljes kromoszómaszámú sejteket tartalmazó preparátumokról a fedőlemez folyékony N₂-ben történő fagyasztás után eltávolítottuk és etanol sorozatban történő dehidratálás után a tárgylemezeket felhasználásig -20°C-on tároltuk.

3.3.2. Próbajelölés

*GISH próba jelölése nick-transzlációval
Az árpa kromoszómák kimutatásához teljes árpa genomi DNS-t jelöltünk nick-transzlációval. Fiatal növények leveléből Sharp és mtsai (1988) módszere szerint nagy töménységű (>1000µg/ml) DNS-t izoláltunk. A próbajelöléshez 1µg DNS-t tartalmazó oldatot kiegészítettünk 16µl-re steril MQ vizzével, majd 4µl Digoxigenin-Nick Translation Mix-et (Roche) adtunk hozzá, melynek összetétele: 50% glicerinben stabilizált puffer, DNS-polimeráz I, DNáz I, 0,25 mM dATP, 0,25mM dCTP, 0,25mM dGTP, 0,17mM dTTP és 0,08 mM digoxigenin-11-dUTP. A nick- transzlációt PCR készülékben (Eppendorf Mastercycler) 15°C-on, 90-120 percig végeztük. A folyamat leállítása 1µl 0,5M EDTA hozzáadásával történt 10 percig, 65°C-on. A jelölt próbát felhasználásig -20°C-on tároltuk.

*GISH próba jelölése random priming módszerrel
Az Agropyron glael szintetikus hibrid genomját alkotó Thinopyrum intermedium és Thinopyrum ponticum kromoszómák kimutatásához a próbajelölést random priming módszerrel végeztük a Roche által forgalmazott High Prime DNA Labeling Kit-tel. A teljes genomi DNS-eket a diploid Pseudoroegneria spicata (St genom) és Thinopyrum bessarabicum (Jb genom) fajból izoláltuk. Az izolált genomi DNS-eket 10 percig kuktában forraltuk, majd 2 µg DNS-t tartalmazó oldatot 12 µl-re egészítettünk ki steril MQ vizzével. A 12 µl DNS-ből, 5 µl (biotint vagy digoxigenintartalmazó) dNTP mixből, 2 µl Hexanucleotide Mix-ből (Roche) és 1 µl Klenow enzimből (Roche) álló keveréket PCR készülékben 37°C-on, 16-20 órán keresztül inkubáltuk. A Jb genomot biotinnal, az St genomot digoxigeninennel jelöltük. A jelölt próbákat -20°C-on tároltuk és felhasználás előtt 5 percig kuktában forraltuk.

*FISH próbák jelölése PCR reakcióval
Árpakromoszómák azonosításához használt FISH próbák:
• HvT01: árpaspecifikus, szubteloméra specifikus repetitív szekvencia (Schubert és mtsai, 1998); kettősen (biotin+digoxigenin) jelölve;

• (GAA)7: centroméra körüli heterokromatinra specifikus mikroszatellit szekvencia (Pedersen és mtsai, 1996) biotinnal jelölve;

• (AGGGAG)4: árpacentroméra-specifikus szekvencia (Hudakova és mtsai, 2001) digoxigeninrel jelölve;

Búzakromoszómák azonosításához használt FISH próbák:

• Afa-family: heterokromatin-specifikus pAs1 szubklón (Nagaki és mtsai, 1995) digoxigeninrel jelölve;

• pSc119.2: szubtelomérás repetitív szekvencia (McIntyre és mtsai, 1990) biotinnal jelölve;

• pTa71: NOR-régióra specifikus rDNS klón (Gerlach és Bedbrook, 1979) vagy szekvencia (Chang és mtsai, 2010a) detmősen (biotin+digoxigenin) jelölve;

A búza és árpa kromoszómák azonosítását repetitív DNS-próbákkal végeztük. A megfelelő primerpárok felhasználásával a szükséges szekvenciákat PCRreakcióval felszaporítottuk. A reakciótermékeket templatként használva egy újabb PCRreakciót indítottunk, melynek során a próbákba biotint (Biotin-16-dUTP - Roche) vagy digoxigenint (Digoxigenin-11-dUTP - Roche), illetve azok 1:1 arányú keverékét építtetünk be.

3.3.3. Genomi in situ hibridizáció (GISH és mcGISH)

A mitotikus preparátumokat a hibridizációt megelőzően előkezeléseknak vetettük alá, melyeknek célja a citoplazma, felesleges RNS és fehérjék eltávolítása és a kromoszómák fixálása a tárgylemezre. Az előkezelések lépései:

1. RNáz-kezelés: 45 perc, 37°C (ribonukleáz A /Sigma-Aldrich/; 5 mg/mL 2xSSC-ben)

2. Mosás: 2×SSC oldatban 2×5 perc, 37°C

3. Pepszinkezelés: 45 másodperc, 37°C (1 mg/mL pepszin 10 mM HCl-ben oldva)

4. Mosás: 2×SSC oldatban 2×5 perc, 37°C

5. Utófixálás: 4%-os paraformaldehidben 1×10 perc, szobahőmérséklet

6. Dehidratálás jéghideg alkoholsorozatban (70% - 90% -100%): 3-3-5perc
A lemezek szárítása szobahőmérsékleten

A hibridizációs keveréket a következők szerint állítottuk össze: 20 ng jelölt próba, 600-700 ng jelöletlen blokkoló DNS (a kimutatni nem kívánt genomok DNS-e 30-40x-es mennyiségben a próbához viszonyítva), 100%-os formamid (Sigma-Aldrich), 20xSSC, 10%-os SDS (5:1:0,1arányban), melyet 10%-os DS-tal (Amresco) egészítettünk ki a végértogat (30μl) eléréséhez preparátumonként. A hibridizációs keveréket a preparátumra cseppentettük és 24×32 mm-es fedőlemezzel buborékmentesen lefédettük. A hibridizáció lépései a következők voltak:

1. A kromoszóma-DNS és a hibridizációs keverék denaturálása PCR-készülékben: 6 perc, 75°C

2. Hibridizáció vízpárás környezetben, hibridizációs kamrában: kb. 18 óra (egy éjszaka), 42°C

3. Poszthibridizációs mosás a nem specifikusan hibridizálódott szekvenciák eltávolítása céljából: 4×SSC-Tween, 2×5 perc, 42°C

4. A biotinill vagy digoxigeninnel jelölt szekvenciák detektálása TNB-ben oldott 10 μg/ml streptavidin–FITC (Roche) ill., antidi–Rhodamine (Roche) antitesttel: 37°C, 25-40 perc, sötétben

5. Mosás: 4×SSC-Tween, 2×5 perc, szobahőmérsékleten

6. A kromoszómák kontrasztfestése fakulást gátló VectaShield-ben (Vector Laboratories) oldott 2 μg/ml DAPI-val (Amersham)

mcGISH

Az *Agropyron glael* kromoszómáinak kimutatásához a GISH optimalizált technikáját alkalmaztunk (Kruppa és mtsai, 2012). A kromoszóma-preparátumokat denaturációs keverékkel denaturáltuk, melynek összetétele 100%-os formamid, 10%-os DS és 20×SSC 5:1:1-hez, 75°C-on 6 percig, majd jéghideg etanolosorozatban dehidratáltuk. Tárgylemezenként 15μl hibridizációs keveréket állítottunk össze, mely tartalmazott 100ng (biotinnal jelölt) Jb és 100ng (digoxigeninivel jelölt) St genomi próbát, 6μg búzablokkolót, valamint formamid:DS:20×SSC=5:4:1 arányú keverékét. A hibridizációs keveréket PCR készülékbén 75°C-on és 6 percig denaturáltuk, majd a már denaturált kromoszóma-preparátumra cseppentettük. Az előkezelés, a hibridizáció és a detektálás lépései kisebb módosításokkal megegyeztek a GISH-nél leírtakkal.
Hibridizációs jelek kimutatása

A hibridizációk eredményét Plan Neofluar 63x olajos objektívvel felszerelt Zeiss AxioScope 2 epifluoreszcens mikroszkóppal (Zeiss, Germany) vizsgáltuk. A DAPI kontraszttestét Zeiss Filterset 01 szűróvel, a jelölt próbák hibridizációs mintázatát a FITC és a Rhodamine emissziós spektrumára egyaránt érzékeny kétsávos szűrőn (Zeiss filter set 24) keresztül, Spot CCD kamerával (Diagnostic Instruments, USA) fényképeztük. A képek kiértékelése, szerkesztése Image-Pro Plus 5.1 szoftverrel (Media Cybernetics, USA) történt. A GISZH képeken a nagyítás mértékét nem tüntettük fel, mivel a digitális technikának köszönhetően tetszőleges mértékben nagyíthatók a képek. A nagyítás mértékének szemléltetéséhez a képeken elhelyezett skálát alkalmaztunk.

3.3.4. Fluoreszcens in situ hibridizáció (FISH)

Amennyiben a FISH-t megelőzően a preparátumon GISH-t vagy mcGISH-t végeztünk, a hibridizációs jeleket eltávolítottuk. A jelölődések lemosása SF50 oldatban (50%-os formamidban) 42°C-on történt (2×5perc), melyet 2×5 perces 4×SSC-Tween-ben végzett lemosás követett. A preparátumonként 30 μl hibridizációs keverék 50% formamidot, 10% 20×SSC-t, 1% SDS-t, 50 ng/μl lazac spermá DNS-ét és 3 különböző FISH próbát (próbánként 40 ng) tartalmazott. A keveréket szükség szerint DS-sel egészítettük ki 30 μl-re.

A hibridizáció során alkalmazott próbakombinációk a következők voltak:

- Afa-family (piros), pSc119.2 (zöld), pTa71 (sárga) búzakromoszómák azonosítására
- (AGGGAG)₄ (piros), (GAA)₇ (zöld), HvT01 (sárga) árpakromoszómák azonosítására

A előkezelések és a detektálási lépések kis módosításokkal megegyeztek a GISH-nél leírtakkal. A hibridizáció 37°C-on történt, a poszthibridizációs mosást 4xSSC-ben (37°C, 2×5 perc) végeztük. A biotinnal, digoxigeninnel vagy a kettő keverékével jelölt szekvenciákat TNB-ben oldott 10 μg/ml Streptavidin-FITC és 10 μg/ml Antidig-Rhodamine antitestekkel fluoreszcensen jelöltük és biotin esetén zöld, digoxigenin esetén piros, kettős jelölés esetén sárga hibridizációs jeleket detektáltunk.

3.4. SSR és STS marker analízis

3.4.1. Az árpa telocentrikus kromoszómák azonosítása a búza/árpa diteloszómás addíciós vonalakban

Az 'Asakaze' búzafajta, 'Manasz' árpfajta és a tíz 'Asakaze'/Manasz' diteloszómás addíciós vonal 2 hetes növényeinek leveleiből genom DNS-t izoláltunk DNeasy® Plant Mini Kit (Fuji)

<table>
<thead>
<tr>
<th>Kromoszómátanak</th>
<th>Marker</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Primerkapcsolósi hőmérséklet (°C)</th>
<th>Szélesség (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2HS</td>
<td>HvCSLF4</td>
<td>CCGTCGGGCTCGGTATGTC</td>
<td>TGGCAGTGACTCTGGCTGTACTTG</td>
<td>67</td>
<td>160</td>
</tr>
<tr>
<td>2HL</td>
<td>Bmag0125</td>
<td>AATATGCCGAAACAAATACAC</td>
<td>AGATAACGATGCACCCAC</td>
<td>55</td>
<td>117</td>
</tr>
<tr>
<td>3HS</td>
<td>HvLTPPB</td>
<td>TGCTGAGACGCTGATAGGTG</td>
<td>CAACACTACAGATTCTCTCAAAG</td>
<td>55</td>
<td>195, 207, 220</td>
</tr>
<tr>
<td>3HL</td>
<td>HvM60</td>
<td>CAATGATGCGGTGAACCTTG</td>
<td>CTCGGGATCTATGGGTCTCT</td>
<td>55</td>
<td>110, 113, 121</td>
</tr>
<tr>
<td>4HS</td>
<td>HvM40</td>
<td>GAGTTTCCCCCTTTTCCCAC</td>
<td>ATCTCCGCGGCTCCACCT</td>
<td>55</td>
<td>136, 141</td>
</tr>
<tr>
<td>4HL</td>
<td>HvM67</td>
<td>GTCGGGCTCGATGTCCTCT</td>
<td>CCGTACCAGGTGACGAC</td>
<td>55</td>
<td>124</td>
</tr>
<tr>
<td>6HS</td>
<td>Bmac0316</td>
<td>ATGCTAGAGTTCCCACTG</td>
<td>ATCAGCTGCTGATGGCTAG</td>
<td>55</td>
<td>148</td>
</tr>
<tr>
<td>6HL</td>
<td>EBmac0806</td>
<td>ACTAAGGGAACGCAGGG</td>
<td>GTGTCATATGAGGTGGGACTTG</td>
<td>55</td>
<td>153</td>
</tr>
<tr>
<td>7HS</td>
<td>Bmac0031</td>
<td>AGAGAAAGAAGAAATGTCACCA</td>
<td>ATACATCCTATGAGGAGG</td>
<td>60</td>
<td>158</td>
</tr>
<tr>
<td>7HL</td>
<td>HvCSLF6</td>
<td>TGGGAGGACCATCTGGCAT</td>
<td>TGTCGGCAGCAATCTCA</td>
<td>64</td>
<td>150</td>
</tr>
</tbody>
</table>

* További információkat található a: http://bioinf.ori.ee/serve😀/table.htm

3.4.2. Az RhtD1b allél kimutatása a 3HS.3BL/Bodri búza/árpa transzlokációs vonalakban

Teljes genomi DNS-t izoláltunk 2 hetes 'Chinese Spring' és 'Mv Bodri' búzafajtából, az Mv9kr1 martonvásári búzatörzsból, a 3HS.3BL/CS/Mv9kr1 és a 3HS.3BL/Bodri búza/árpa transzlokációs vonalakból DNeasy® Plant Mini Kit (Qiagen) DNS izoláló kit segítségével. A DF2/WR2 és DF/MR2 primer párokat (Ellis és mtsai, 2002) használtuk a RhtD1b (Rht 2) törpeségi gén kimutatására az 'Mv Bodri' búzafajtában és a 3HS.3BL/Bodri búza/árpa transzlokációs vonalakban. A PCR reakciókat Applied Biosystem 9700 (Life Technologies,
California, USA) készülékben végeztük. A 16µl végértérfogatú PCR reakció oldat 200 ng genomi DNS-t, 5x Green Go Taq Flexi puffert (Promega), 2,34mmol/L MgCl-t, 0,9µmol/L dNTP-t, 10pmolt a forward és a reverse primerekből valamint 1U GoTaq DNS polimeráztt (5U/µL, Promega) tartalmazott. A PCR reakció termékeit 1,5%-os agaróz gélen (Lonza, Rockland, Maine, USA) választottuk el és a PCR termékek ethidium bromidos festéssel, UV fény alatt váltak láthatóvá. A termékek méretét 100bp-os DNS létra (Qiagen, Germany) segítségével határoztuk meg. Az eredmények elemzését Syngene G: BOX gél dokumentációs rendszerrel (Syngene, Md, USA) végeztük.

3.4.3. Molekuláris markeres vizsgálatok a búza/Agropyron (6DL.6DS-?St) terminális transzlokációs vonalaknál

Teljes genomi DNS-t izoláltunk a következő genotípusok 2 hetes növényeiből: Nannong 02Y23 búzavonal, 'Chinese Spring', 'Mv Karizma' búzafajtákból, Pseudoroegneria spicata (St genom), Thinopyrum bessarabicum (J³), Thinopyrum elongatum (E), Thinopyrum intermedium (JJ'St), a 161402 és 161407 citológiai számú (a hexaploid búza genom mellett csak 6DL.6DS-?St terminális transzlokációt hordozó) növényekből, 161419 és 161434 citológiai számú (búza/Agropyron centrikus fúziót hordozó) növényekből. A genotípusokban a Pm21, PmL962 és Lr38 markerek jelenlétét követtük nyomon. A PCR reakciókat Applied Biosystem 9700 (Life Technologies, California, USA) készülékben végeztük. A Pm21 (Liu és mtsai, 1999b) kimutatásához a 13µl végértérfogatú PCR reakció oldat 200 ng genomi DNS-t, 5x Green Go Taq Flexi puffert (Promega), 1,95mmol/L MgCl-t, 1,29µmol/L dNTP-t, 15pmolt a forward és a reverse primerekből valamint 1U GoTaq DNS polimeráztt (5U/µL, Promega) tartalmazott. A PmL962 (Shen és mtsai, 2015) és Lr38 (Mebrate és mtsai, 2007; Yan és mtsai, 2008) jelenlétének kimutatásához a 16µl végértérfogatú PCR reakció oldat 200 ng genomi DNS-t, 5x Green Go Taq Flexi puffert (Promega), 2,34mmol/L MgCl-t, 0,9µmol/L dNTP-t, 10pmolt a forward és a reverse primerekből valamint 1U GoTaq DNS polimeráztt (5U/µL, Promega) tartalmazott. A PCR reakció termékeit 1,5%-os agaróz gélen (Lonza, Rockland, Maine, USA) választottuk el és a termékek ethidium bromidos festéssel, UV fény alatt váltak láthatóvá. A termékek méretét 100bp-os DNS létra (Qiagen, Germany) segítségével határoztuk meg. Az eredmények elemzését Syngene G: BOX gél dokumentációs rendszerrel (Syngene, Md, USA) végeztük. A markerek elnevezése, típusa, a primerek szekvenciája és az amplifikált termékek méretét az 5. táblázatban foglaltam össze.
5. táblázat. A terminális transzlokáció molekuláris markeres vizsgálatához használt markerek, a primer szekvenciák és a termékek fragmenthosszúsága.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Marker típus</th>
<th>Primer szekvencia</th>
<th>Termék mérete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm21D</td>
<td>SCAR</td>
<td>CAC TCT CCT CCA CTA ACA GAG G</td>
<td>1265bp</td>
</tr>
<tr>
<td>Pm21E</td>
<td>SCAR</td>
<td>GTT TGT TCA CGT TGA ATG AAT TC</td>
<td></td>
</tr>
<tr>
<td>BE443737F</td>
<td>EST-STS</td>
<td>GAC CCG AAT GCT AGT ACC GG</td>
<td></td>
</tr>
<tr>
<td>BE443737R</td>
<td>EST-STS</td>
<td>ATG ACA CCG TTT GCC ATT GC</td>
<td></td>
</tr>
<tr>
<td>Lr38F</td>
<td>SCAR</td>
<td>GCT GAA TCT GCG TAT CGT CCC</td>
<td>982bp</td>
</tr>
<tr>
<td>Lr38R</td>
<td>SCAR</td>
<td>GAC TTG TTC TTC GGC GTG TTG</td>
<td></td>
</tr>
</tbody>
</table>

3.5. Növénynevelés fitotroni növénynevelő kamrákban

A citogenetikai és molekuláris módszerekkel azonosított, majd tápkockába elültetett növényeket genotípustól függően 4°C-on 6-8 hétig vernalizáltuk (az árpa kromatint hordozó genotípusok esetén a vernalizáció 6 hetes, az A. glael kromosómákat hordozó vonalak esetén a vernalizáció 8 hetet igényel). A növénynevelés fitotroni növénynevelő kamrákban a Tischner és mtsai (1997) által kidolgozott módszer szerint történt. Ültetéstől bokrosodásig 12 óra megvilágítást (200 μmol m⁻² s⁻¹), valamint 15°C nappali és 10°C éjszakai hőmérsékletét alkalmaztunk, majd szárba induláskor, virágzáskor és a szemfejlődés kezdetén 2-2°C-kal növeltük a hőmérsékleteket és 2 órával a megvilágítás hosszát. A learatott növényeket részletesen feldolgoztuk (növénymagasság, bokrosodás, főkalász hossza, kalásonkénti és növényenkénti szemszám), a szemeket 4 °C-os génbanki magtárolóban tároltuk. Genotípusonként 10 növény paramétereit jegyeztük fel.

3.6. Növénynevelés szántóföldi kísérleti parcellákon

A vizsgált genotípusok szemeit martonvásári Tükrös tenyészkertünkben (GPS koordináták: É47 18' 40" K18 46' 56") elvetettük és felneveltük. Az 1 méter hosszúságú sorokban egyenletes távolságra 10 szemet vetettünk, a sorok közötti távolság 15 centiméter volt.
A morfológiai vizsgálatokra minden genotípusból random 10 növényt jelöltünk ki. Önterményítés céljából a kalászokat izolátorzacskóval lattuk el.

Az organikus tenyészkerben (a Tükrös tenyészker egy elkülönített része) a vizsgálatokat megelőző 10 évben nem juttattuk ki műtrágyát. A megfelelő vetésforgó és elővetemény biztosította a tápanyagellátást.

A nemesítők lászlópusztai tenyészkerjében (GPS koordináták: É47 18' 05" K18 49' 10") és Bolgárföld tenyészkerben (GPS koordináták: É47 19' 40" K18 47' 10") a növényeket hatsoros kisparcellákban neveltük fel. Ezek a termőhelyeken minden év őszén volt egy alaprágyázás (3 × 60 kg hatóanyag Na/K/P/ha), illetve egy tavaszi fejtrágyázás (40-60 kg N hatóanyag/ha).

3.7. A 3HS.3BL/CS/Mv9kr1 transzlokációs vonal keresztezése az 'Mv Bodri' bűzafajtával

3.8. 'Asakaze'/Manaszbúza/árpa diteloszómás vonalak kiválogatása, azonosítása és agronómiai tulajdonságainak kiértékelése

Az 'Asakaze'/Manaszbúza × árpa hibridek (Molnár-Láng és mtsai, 2000b) bűzával kétszer kereszteztett és többször öntermékenyített utódai - főleg diszómás és monoszómás addíciók - közül válogattuk ki a diteloszómás addíciós vonalakat molekuláris citogenetikai módszerekkel és
molekuláris markerek segítségével. Az 'Asakaze' × 'Manasz' búza × árpa keresztezések sémáját és a diteloszómás vonalak kiválogatását a 3. ábra foglalja össze.

3. ábra. Az 'Asakaze' × 'Manasz' búza × árpa keresztezések sémája és a diteloszómás vonalak kiválogatása.

3.9. Az 'Asakaze'/Manasz' búza/árpa diteloszómás vonalak virágzási idejének kiértékelése

3.10. Felvételezés, statisztikai analízis

A búza/árpa addíciós és transzlokációs vonalak, a búza/A. glael utódvonalak, valamint a szülői genotípusok statisztikai elemzéséhez 10-10 kijelölt növényen az alábbi fenotípusos paramétereket mértük:

* növénymagasság (cm) közvetlenül aratás előtt
* bokrosodás: növényenkénti kalászok száma (db)
* főkalász hossza (cm) aratás után
* kalászonkénti kalászakaszám (db) aratás után
* fertilitás: kalászkánkénti szemszám (db) aratás után
* főkalászonkénti szemszám (db) aratás után
* növényenkénti szemszám (db) aratás után
* ezerszemtömeg (g) aratás után

A kapott értékeket a búza szülőpartnerhez hasonlítottuk. A statisztikai elemzést Student-féle kétmintás t-próbával (Microsoft Excel adatelemző csomag), P = 0,05 szignifikancia szinten végeztük el. A búza/A. glael utódon spontán levélorosda-fertőzöttségének mértékét tenyészkerti körülmények között, 0-4 skálán bonitáltuk, ahol a 0 a tünetmentes, rezisztens, 4 a nagyon fogékony kategóriát jelöli (Stakman és mtsai, 1962).

3.11. Az 'Asakaze'/ ‘Manasz' búza/árpa diteleszómás addíciós vonalak sóstressz-toleranciájának vizsgálata

A sóstressz vizsgálatát csíranövénykorban végeztük el a Növényélettani Osztályon Dr. Darkó Éva tudományos főmunkatárs segítségével az 'Asakaze'/ ‘Manasz' diteleszómás addíciós vonalaknál, a búza és árpa ('Asakaze' és 'Manasz') szülői genotípusoknál. A csírázási kísérletekben, minden genotípusból 3×20 szemet sterilizáltunk 10%-os nátrium-hipoklorit oldatban 15 percig, kétszer leöblítettük desztillált vízzel, majd csíráztattuk 0, 100, 200 vagy 250 mM-os NaCl oldattal átitatott szűrőpapíron Petri csészékben, három napig szobahőmérsékleten és megállapítottuk a csírázott szemek arányát, a gyökerek és hajtások hosszúságát és súlyát.
3.12. Mv9kr1 × A. glael híbrid búzával keresztezt utód-generációk előállítása

Mv9kr1/A.glael//CS/3//Mv Karizma 2012-2013. Bűzanemesítők tenyészkertje/ Prebreed/ 93-96 Parcela

keresztezés

öntermékenyítés

öntermékenyítés

153397
Diszómás terminális transzlokáció
öntermékenyítés

153404
Diszómás terminális transzlokáció
öntermékenyítés

öntermékenyítés

161401-161430 161431-161440 vonalak felszaporítása

4. Eredmények és megvitatásuk

4.1. A búza/árpa diteloszómás addíciós vonalak kiválogatása és morfológiai tulajdonságainak jellemzése

Az árpakromoszómák jelenlétét a búza genetikai hátterében GISH-sel és molekuláris markerek segítségével ellenőriztük. Az 'Asakaze'/Manasz' búza × árpa hibridek búzával kereszteszt utódai közül 860 BC növényt vizsgáltunk GISH-sel (M2. melléklet). A következő diteloszómás addíciós vonalakat azonosítottuk: 2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS, 7HL. Az új genetikai anyagokat főleg a monoszómás (2H, 3H, 4H, 6H, 7H) addíciós vonalak közül válogattuk ki, 2010 és 2013 között. A vizsgált növények között monoteloszómás addíciókat, Robertsoni transzlokációkat, mono- és diszómás addíciókat, izokromoszómákat hordozó genotípusokat azonosítottuk.

Az árpa telocentrikus kromoszómákat FISH-sel és árpa kar-specifikus SSR és STS markerek segítségével azonosítottuk. A HvT01 árpa szubteloméra specifikus és a (AGGGAG)$_4$ centroméra specifikus próbákat annak a bizonyítására alkalmaztuk, hogy a teljes árpa kromoszómakar pár jelen van egy-egy genotípusban. A 42 búza kromoszóma jelenlétét a vizsgált genotípusokban bűzaspecifikus repetitív FISH próbák (pSc119.2, Afa famiy, pTa71) felhasználásával mutattuk ki.

A 2HS addíciós növényeknek tar, keskenyedő, jellegzetesen S alakú kalászai vannak és kemény pelyvalavelei, míg a 2HL vonal esetén tar, laza szerkezetű kalászok figyelhetők meg (5. és 7. ábra). A fitotroni növénynevelő kamrákban végzett kísérletekben a 2HS és 2HL addíciós vonalak szignifikánsan jobb bokrosodással és növényenkénti szemyszámmal rendelkeztek, mint a kontrollnak nevelt 'Asakaze' búzafajta (M3. melléklet).

5. ábra. 2HS diteloszómás addíciós növény kalásza (2015. május, Tükrös tenyészkert, Martonvásár).
6. ábra. A 2HL kromoszómakarok kimutatása GISH-sel a búza/árpa diteloszómás addíciós vonalban (a búzakromoszómák DAPI kontrasztfestést követően kék színűek, a digoxigeninrel jelölt teljes árpa genomi DNS hibridizálás és detektálás után bíborvörös színű). Skála=10µm.

7. ábra. 2HL diteloszómás addíciós növény kalásza (2015. május, Tükrös tenyészkert, Martonvásár).

A 3HS búza/árpa diteloszómás addíciós vonalat egy 3H monoszómát hordozó növény utódai közül válogattuk ki (092845), míg a 3HL diteloszómát egy 3H diszómás addíciós vonal utódai

8. ábra. A 3HS kromoszómakarok kimutatása GISH-sel a búza/árpa diteloszómás addíciós vonalban (a búzakromoszómák DAPI kontraszttestést követően kék színűek, a digoxigeninnel jelölt teljes árpa genomi DNS hibridizálás és detektálás után bíborvörös színű). Skála=10µm.

10. ábra. A 3HL kromoszómakarok kimutatása GISH-sel a búza/árpa diteloszómás addiciós vonalban (a búzakromoszómák DAPI kontrasztfestést követően kék színűek, a digoxigeninnel jelölt teljes árpa genomi DNS hibridizálás és detektálás után bíborvörös színű). Skála=10µm.

A 4HS addíciós vonal esetében bunkós, szálkacsonkos kalászok figyelhetők meg, a 4HL vonal kalászai rövidek, sűrűek és szálkacsonkosak (12. és 15. ábra). A búza/árpa diteloszómás addíciós növényei közül a 4HL vonal növényei voltak a legalacsonyabbak, a magasságuk szignifikánsan kisebb volt a kontrollnak nevelt búza genotípusoknál. A 4HS és 4HL vonalak fertilitása volt a legjobb az összes diteloszómás addíciós vonal közül, a fitotroni és a tenyészkerti kísérletek során is (M3. és M4.táblázat).

15. ábra. 4HL diteloszómás addíciós növény kalásza (2015. május, Tükrös tenyészkert, Martonvásár).

17. ábra. 6HS diteloszómás addíciós növény kalásza (2015. május, Tükrös tenyészkert, Martonvásár).

22. ábra. A 7HL kromoszómakarok kimutatása GISH-sel a búza/árpa diteloszómás addiciós vonalban (az árpa kromoszómakarok bíborvörös színüre festődtek). Skála=10µm.

23. ábra. 7HL diteloszómás addiciós növény kalásza (2015. május, Tükrös tenyészker, Martonvásár).

A vizsgált növények 30%-a (260 növény) homozigóta telocentrikus növény volt, az árpakromoszómák eliminálódottak az összes vizsgált növény 46%-ából (395 növényből). A citológiai ellenőrzött növényekben azonosított árpa kromoszóma-szegmentumok előfordulásának gyakoriságát az M2. mellékletben foglaltam össze.
Az addiciós vonalak felszaporítása során vizsgáltuk stabilitásukat is. A diteloszómás növények utódaiban a telocentrikus kromoszómák jelenlétéit követtük nyomon. Minden egyes előállított vonal stabilitása a telocentrikus kromoszómák jelenlététté tekintve 50% feletti volt. A legalacsonyabb stabilitása a 2HS vonalnak volt (28 vizsgált utód közül 16 volt homozigóta teloszómás növény), a legmagasabb stabilitással pedig a 2HL vonal rendelkezett (a 28 vizsgált utódnövény közül mind a 28 diteloszómás volt). A diteloszómás addiciós vonalak stabilitására vonatkozó adatokat a 6. táblázatban tüntettem fel.

6. táblázat. Az ’Asakaze’/’Manasz’ diteloszómás addiciós vonalak stabilitása, a diteloszómás növények utódai között.

<table>
<thead>
<tr>
<th>Genotípus</th>
<th>A vizsgált utódnövények száma</th>
<th>Azonosított diteloszómás növények száma</th>
<th>A diteloszómás növények aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td>2HS</td>
<td>28</td>
<td>16</td>
<td>57,14%</td>
</tr>
<tr>
<td>2HL</td>
<td>26</td>
<td>26</td>
<td>100%</td>
</tr>
<tr>
<td>3HS</td>
<td>36</td>
<td>30</td>
<td>83,33%</td>
</tr>
<tr>
<td>3HL</td>
<td>30</td>
<td>19</td>
<td>63,33%</td>
</tr>
<tr>
<td>4HS</td>
<td>45</td>
<td>38</td>
<td>84,44%</td>
</tr>
<tr>
<td>4HL</td>
<td>20</td>
<td>19</td>
<td>95%</td>
</tr>
<tr>
<td>6HS</td>
<td>44</td>
<td>28</td>
<td>63,63%</td>
</tr>
<tr>
<td>6HL</td>
<td>36</td>
<td>28</td>
<td>77,77%</td>
</tr>
<tr>
<td>7HS</td>
<td>23</td>
<td>18</td>
<td>78,26%</td>
</tr>
<tr>
<td>7HL</td>
<td>81</td>
<td>73</td>
<td>90,12%</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>M</td>
<td>2HS 2HL</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>HvCSLF4</td>
<td>Bmag0125</td>
<td>HVLTPPB</td>
</tr>
</tbody>
</table>

24. ábra. A diteloszómás addíciós vonalak kapilláris gélelektroforézis mintázata a következő molekuláris markerek használatával: HvCSLF4-2HS, Bmag0125-2HL, HVLTPPB-3HS, HvM60-3HL, HvM40-4HS, HvM67-4HL, Bmac0316-6HS, EBmac0806-6HL, Bmac0031-7HS és HvCSLF6-7HL (A= ’Asakaze’ M=’Manasz’ szülői genotípusok).
4.1.1. Az 'Asakaze'/Manasz' diteloszómás addíciós vonalak virágzási idejének megfigyelése szántóföldi kísérletben

4.1.2. Az 'Asakaze'/Manasz' diteloszómás addíciós vonalak sóstressz vizsgálata

Csírázási teszteket alkalmaztunk az 'Asakaze'/Manasz' búza/árpa diteloszómás addíciós vonalak sótűrésének megállapítására, összehasonlítva a kapott eredményeket a búza és árpa szülői vonalakéval. Az eredményeket a 26. ábrán és M6. mellékletben foglaltam össze. Sókezelés nélkül a genotípusok csak csekély variabilitást mutattak. A 2HL és 4HS diteloszómás addíciós vonalak jobb növekedési erővel rendelvek, mint a búza kontroll. A 2HL és 4HS addíció az 'Asakaze' búzafajtánál hosszabb csírázáskori gyökereket és hajtásokat eredményezett kontroll körülmények között. Ez a tulajdonság még megfigyelhető volt alacsony (100mM) sókezelés mellett is, de magasabb sókonzentrációk alkalmazásakor (200 és 250mM koncentráció) a különbség a genotípusok között már eltűnt. A 6HS, 6HL és 7HS kisebb gyökernövekedést mutattak úgy kontroll, mint sóstressznek kitett körülmények között a búza szülőhöz képest. Ezzel szemben a 'Manasz' árpa és a 7HL diteloszómás vonal korai növekedési potenciálja jobban megmaradt még magas 200, illetve 250 mM sókonzentráció mellett is (26.ábra és M6. melléklet).

![Diagram](image)

26. ábra. A csírázási tulajdonságok összehasonlítása (csírázási képesség, G%, gyökérhosszúság, RL, hajtás hosszúsága, ShL, gyökér súlya, RW, hajtás súlya, ShW) csíranövénykorban a következő genotípusoknál 'Asakaze' búzafajta (A), 'Asakaze'/Manasz' diteloszómás addíciós vonalak, és 'Manasz' árpfajta (M) a kontroll, illetve sóstressz kísérletekben 100mM (S100),
200mM (S200) és 250mM (S250) NaCl által kiváltott sóstressz alkalmazása esetén. A szürke blokkok etetés az értékek közel azonosak (10%-on belül) az 'Asakaze' bűza kontrollal. A piros és kék blokkok magasabb, illetve alacsonyabb értékeket mutat az 'Asakaze' bűzafajtánál. Az abszolút értékeket az M6. mellékletben tüntettem fel.

4.1.3. A bűza/árpa diteloszómás addíciós vonalak jellemzése

A 'Manasz' árpa jó téliállósággal rendelkező öszi árpafajta, amely jobban alkalmazkodott a Közép-Európai klimatikus viszonyokhoz, mint a bűza × árpa keresztezésekben eddig használt 'Betzes' ugyanakkor jobb agronómiai tulajdonságaikkal rendelkezik, - mint például magasabb terméshozam, magas alumínium és sóstressz-tolerancia - az idegen fajú keresztezésekhez eddig használt két árpafajtával összehasonlítva (Dulai és mtsai, 2010; Darko és mtsai, 2012; Darko és mtsai, 2015). Bűza/idegenfajú addíciós vagy diteloszómás addíciós vonalakat a bűza számos termesztett és vad rokonával történő hibridizáció során állítottak elő, mint például a rozs, Aegilops fajok, Thinopyrum ponticum, Elymus fajok, Leymus racemosus vagy Hordeum

vonal növényei voltak a legalacsonyabbak voltak a búza szülői genotípusoknál mind a fitotroni, mind a tenyészkerti kísérletben (M3. és M4. melléklet). A 6HS, 6HL és 7HS addícióknál figyeltük meg a leghosszabb kalászokat az addíciós vonalak közül, miközben a 4HS és 4HL vonalaknál szignifikánsan rövidebb kalászok fejlődtek, de jobb fertilitással rendelkeztek a szülői genotípusoknál. Ez főleg a 4HL diteloszóma kalászainál volt megfigyelhető, amelyek sürű szerkezetűek voltak és szignifikánsan magasabb kalászonkénti szemszámmal rendelkeztek, mint az 'Asakaze' és 'Chinese Spring' búzafajták a Tükrös tenyészkerület kivitelezett kísérlet esetén (M4. melléklet). A 6HS addíciós vonal a legalacsonyabb fertilitással rendelkezett a diszómás addíciók (Molnár-Láng és mtsai, 2012a és a dolgozatban szereplő adatok) és a 7HL a diteloszómák között, a 6HS vonal magasabb fertilitást mutatott a szántóföldi kísérlet során (M3. és M4. melléklet).

Az introgressziós vonalak felhasználhatók az idegen fajból származó kromoszómákon lokalizált génnek expressziójának vizsgálatára (Chang és de Jong, 2005). Korábban végzett kísérletekben számos különböző búza és árpa keresztezéséből származó búza/árpa addíciós és transzlokációs vonalat vizsgáltak alumínium és sötérs tekintetében (Dulai és mtsai, 2010; Darko és mtsai, 2012). A különböző 'Asakaze’/’Manasz’ diszómás addíciós vonalak (2H, 3H, 3HS, 4H,
6H, 7H és 7HL) és a szülői genotípusok ('Asakaze', 'Chinese Spring' és 'Manasz') sötürésének vizsgálata kimutatta, hogy a 7H és 7HL addíciók magasabb sóstressz toleranciát mutattak mind csíranövény korban, mind korai fejlődési szakaszban mint a búzaszülők, amelyek közül az 'Asakaze' sötürése magasabb volt mint a 'Chinese Spring' fajtájé (Darko és mtsai, 2015). A jelenlegi kísérlet, amelyben az összes előállított diteloszómás vonalat vizsgáltuk (2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS, 7HL) igazolta a korábbi eredményeket. A 7HS diteloszóma nagyobb mértékű növekedés csökkenést mutatott sóstressz hatására, mint az 'Asakaze' búzafajta, miközben a 7HL vonal és a 'Manasz' magasabb mértékű sötüreést mutattak a csírázás során, mint az 'Asakaze'. Ezek az eredmények arra engednek következtetni, hogy a búza genetikai háttérben 7H hosszúkart hordozó vonalak hasznos genetikai anyagként szolgálhatnak a búza sötürésének javításában. Erőteljesebb gyökér és hajtásnövekedést figyeltünk meg szintén a 2HL és 4HS vonalaknál az 'Asakaze'-val összehasonlítva csíranövénykorból, mind a kontroll, mind a közepes sóstressz hatásnak kitett növények esetében, de ez az erőteljes növekedés abbamaradt erős sóstressz hatására, arra utalva, hogy az erőteljes növekedés nem korrelálható a sóstresszre történő válaszra. Intenzív gyökérnövekedést figyeltünk meg a 4H diszómás addíciós vonal esetén is, és a jelen kísérlet eredményei azt bizonyítják, hogy ez a 4HS kromoszómakar jelenlétével van kapcsolatban.

A diszómás és diteloszómás addíciós vonalak felhasználhatók búza/idegen fajú transzkripciós vonalak előállítására, amelyek az addícióknál jóval stabilabban. Egy 'Asakaze'/Manasz' 7H monoszómás addíciós vonal utódnövényeit vizsgálták a 7H kromatin jelenlétének kimutatása céljából és a vizsgálatok kimutatták egy spontán 4BS.7HL Robertsoni transzkripciós jelenlétét (Cseh és mtsai, 2011). A transzkripciós vonalban magasabb (1,3;1,4)-ß-D-glükan szintet mutattunk ki, alátámasztva azt a feltételezést, hogy a HvCSLF6 gén, amely a 7HL kromoszómakar centromérához közel régiójában térképeztek és a ß-glükán termelést szabályozza, expresszálódnak a hexaploid búza genetikai háttérében. Erre az ismeretre alapozva egy 7BS.7HL búza/árpa kompenzátor transzkripciós vonalat állítottunk elő, mivel az árpa homeológ kromoszómákban kompenzáldák egy bizonyos búzakromoszóma szegmentum eliminációját, mint a nem homeológ kromoszóma-szegmentumok (Cseh és mtsai, 2015). A 7BS.7HL transzkripciós jelenlét a Rannaja búzafajta 7B monoszómá és az 'Asakaze'/Manasz' 7H diszómás addíció keresztezéséből származik. Az F1-ben GISH alkalmazásával az utódok közül azokat a növényeket válogattuk ki, amelyek 42 kromoszómacska rendelkeztek (monoszómásak voltak a búza 7B kromoszómáját és az árpából származó 7H kromoszóma tekintetében). Az F1 növényeket öntemékenyítettük és az F2-ben a 7H árpakromoszóma rövid vagy hosszú karjának jelenlétét 7H karspecifikus markerek segítségével igazoltuk. Az F3-ban hat növényt válogattunk.
ki, amelyek a 7BS.7HL centrikus fúziót monoszómás formában hordozták, ezeket a növényeket öntermékenyítettük. A következő generációban a 42 kromoszómát és a transzlokációt homozigóta formában hordozó növényeket GISH, FISH és molekuláris markerek segítségével azonosítottuk (Cseh és mtsai, 2015). A növényekből származó szemek (1,3;1,4)-β-D-glükán tartalmát a vonalak felszaporítása után fogjuk vizsgálni. Ha a HvCSLF6 gén expresszálódik ebben a genetikai háttérben, a 7BS.7HL transzlokációs vonal potenciális genetikai anyagként szolgálhat a búza (1,3;1,4)-β-D-glükán tartalmának növelésében.

4.2. A 3HS.3BL Robertsoni transzlokáció introgressziójára egy modern martonvásári búzafajtába

4.2.1. Az utódvonalak citogenetikai azonosítása

A 3HS.3BL/CS/Mv9kr1 Robertsoni transzlokációs vonal 'Mv Bodri'-val való keresztezése után a centrikus fúzió öröklődését az utódokban GISH-sel követtük nyomon (28. a és b ábra). A transzlokációs vonalat a spontán létrejött 3HS.3BL centrikus fúzió utódnövényei közül válogattuk ki, ezért feltételeztük, hogy az újonnan előállított genetikai anyagban az árpa kromatin a 3HS árpa kromoszómakarból származik. A búzagenomhoz tartozó kromoszómákat FISH vizsgálattal elemeztük, amely során kimutattuk, hogy a 3BS kromoszómakar kivételével
minden A, B és D genomhoz tartozó kromoszóma jelen van a genotípusokban. Az első FISH vizsgálat során 3 DNS repetitív próbát alkalmaztunk: Afa family, pSc 119.2 és pTa71 (28. ábra e). A FISH analízis kimutatta 20 pár búzakromoszóma és 1 pár transzlokációs kromoszóma jelenlétét. A transzlokáció magába foglalta a 3BL kromoszómakart, míg a 3BS kar hiányzott. A második próbakombinációval végzett FISH vizsgálatot árpakromoszóma specifikus próbák felhasználásával hajtottuk végre: árpa centroméra specifikus repetitív próba (AGGGAG)₄, árpa szubteloméra specifikus próba (HvT01) és (GAA)₇ mikroszatellit próba (28. ábra d). Az árpa centroméra specifikus és szubteloméra specifikus hibridizációs jelek jelenléte bizonyította a teljes árpa kromoszómakar beépülését az átrendeződött kromoszómákban, míg a (GAA)₇ mikroszatellit próba specifikus hibridizációs jeleket adott mind a 3HS, mind a 3BL kromoszómakarokon, alátámasztva, hogy ezek voltak a centrikus fúzió kialakításában résztvevő kromoszóma szegmentumok.

27. ábra. Az eredeti 3HS.3BL/CS/Mv9krl búza/árpa transzlokációs vonal (1) kalászainak összehasonlítása az 'Mv Bodri' (2) fajtával és az 'Mv Bodri' –val keresztezett (3HS.3BL/Bodri) szálkacsonkos (3) és 3HS.3BL/Bodri tar (4) transzlokációs vonallal.
28. ábra. Genomi in situ hibridizáció (GISH) a 3HS.3BL/Bodri genotípus mitotikus kromoszóma preparátumain. A digoxigeninrel jelölt árpa teljes genomi DNS bíborvörös színű (a) Monoszómás transzlokáció (b) Homozigóta transzlokáció (c) Fluoreszcens in situ hibridizáció a 3HS.3BL/Bodri mitotikus kromoszóma preparátumán Afa family (piros), pSc119.2 (zöld) és pTa71 (sárga) repetitív DNS próbák alkalmazásával. (d) A 3HS.3BL/Bodri centrikus fúzió árpakromoszóma specifikus próbák alkalmazásával vizsgált FISH mintázata: (AGGGAG)$_4$ (piros), (GAA)$_7$ (zöld), HvT01 (sárga). Skála=10µm.

4.2.2. A 3HS.3BL/Bodri vonalak molekuláris markeres analízise

Vizsgáltuk a növénymagasságot meghatározó RhtD1b, 'Mv Bodri’-ban megtalálható allél jelenlétét a Robertsoni transzlokációt hordozó vonalakban. A molekuláris markeres analízis eredményei a 29. ábrán láthatók. Az RhtD1b allél korábban kb. 15cM távolságra térképezték az Xwmc048b mikroszatellit markertől az 'Mv Bodri’ búzafajta 4D kromoszómájának rövid karján. A DF/MR2 RhtD1b mutáns alléljára specifikus primerpár a várt 254 bp hosszúságú terméket
amplifikálta az 'Mv Bodri' búzafajtánál illetve mindkét 3HS.3BL/Bodri genotípusnál (I vonal és II vonal), míg a DF2/WR2 primerpár egy 264 bp hosszúságú terméket amplifikált, amely megfelel az \(RhtD1a \) allélnak (vad típus), amelyet a 3HS.3BL/CS/Mv9kr1 transzlokációs vonal és az Mv9kr1 búzavonal hordoz. A 3HS.3BL/CS/Mv9kr1 vonal magasságának szignifikáns csökkenése az 'Mv Bodri'-val történő keresztezés után az \(RhtD1b \) törpeségi allél beépülésének eredménye.

29. ábra. Az \(RhtD1b \) allél specifikus molekuláris markerek agaróz gél-elektroforézis mintázata a következő DNS templátokon: 'Mv Bodri' búzafajta, 'Chinese Spring' búzafajta, Mv9kr1 búzatörzs, 3HS.3BL/CS/Mv9kr1 transzlokációs vonal és 3HS.3BL/Bodri transzlokációs vonalak (I vonal, szálkacsonkos és II vonal, tar). Az \(RhtD1b \) allél specifikus termékeket nyilakkal jelöltük. Egy 100 bp hosszúságú létrát alkalmaztunk a fragmentek hosszúságának meghatározására.

4.2.3. A növények fenotípusának vizsgálata a martonvásári tenyészkeretben

A morfológiai és statisztikai vizsgálatok eredményeit az M7. és M8. mellékletben foglaltam össze. A vizsgálatba bevont genotípusokat (3HS.3BL/CS/Mv9kr1, 3HS.3BL/Bodri testvérvonalkat, búza szülői genotípusokat – CS fajta és Mv9kr1 búzatörzs, illetve a keresztezéshez használt 'Mv Bodri' búzafajtát) martonvásári tenyészkerünkbe két egymást követő őszön (2012 és 2013 évek) vetettük el. A 2012-2013-as kísérletet az organikus

Az 'Mv Bodri' fajtába beépített két transzlokációs vonal közül a II vonalnál rövidebb kalászok fejlődtek, mint az I vonalnál. A tar kalásztípusú vonal főkalászának hossza hasonló volt az eredeti transzlokációs vonaléhoz és a 'Chinese Spring' búzafajtához, miközben a szálkacsonkos vonal kalászai az 'Mv Bodri' kalázhosszához hasonlíthatók. Az I és II vonal fertilitása hasonló volt, a hosszúságbeli különbségek ellenére (M7. és M8. melléklet).

Az ezerszem-tőmeget meghatározunk mindkét évben: az organikus tenyészketben a 2012-2013 vegetációs időszakban (M7. melléklet) és nemesítők tenyészkertjében (Lászlópuszta) a 2013-2014 vegetációs időszakban (M8. melléklet). Az ezerszem-tőmeg a 3HS.3BL/Bodri vonalak estében alacsonyabb volt az 'Mv Bodri' és Mv9kr1 búza genotípusokhoz képest az organikus tenyészkertben. Az ezerszem-tőmeg nagyobb értékét figyeltük meg a nemesítők tenyészkertjében, mint az organikus tenyészkertben, de az alacsony növényszám miatt a Tükrösben nevelt növények esetében nem tudtunk elvégezni egy nagyon pontos mérést, ezért
ezeket az értékeket nem tüntettük fel. Ugyanakkor egy súlyos sárgarozsda fertőzés miatt a fogékony genotípusok (pl. Mv9kr1) ezerszem-tőmege erősen csökkenthetett.

4.2.4. A 3HS.3BL/Bodri vonalak előállítása és vizsgálata

fertilitása alátámasztja azt a feltételezést, hogy a 3BS kromoszómák eliminálódását ebből a vonalból nagymértékben kompenzálja a 3HS kromoszómakar beépülése.

A modern nemesített búzafajták ideális magassága 80-110 cm, ezt a magasságot az Rht (reduced height) gén introgressziójával lehet elérni, ezáltal csökkentve a megdölés mérétét és növelve a terméshozamot. A termesztett búzában eddig 21 törpeségi gén azonosítottak (McIntosh és mtsai, 2003). Ezeket a géneket két csoportra lehet osztani a gibberellin-savval (GA) szembeni érzékenységüket tekintve, például az Rht8 GA szenszitív, míg az RhtB1b-Rht1, RhtD1b-Rht2 és az RhtBe1-Rht11 GA insenzitívek (Ellis és mtsai, 2004; Haque és mtsai, 2012). Az RhtB1b és RhtD1b génnek a 4B, illetve 4D kromoszómák rövid karjára vannak térképezve (Borlaug és mtsai, 1968; Gale és Youssefien, 1985; Peng és mtsai, 1999). A 3HS.3BL/CS/Mv9kr1 növényei általában magasabbak 100 cm-nél. A 3HS.3BL introgressziójával az 'Mv Bodri' búzafajtába a növények magassága 8-23%-kal csökkent, a talaj és az időjárási viszonyoktól függően. A növénymagasság csökkenése fontos szerepet tölt be a terméshozam növekedésében és a növények megdölésének csökkentésében. A növénymagasság csökkenése a 3HS.3BL/Bodri genetikai esetében egyértelműen az 'Mv Bodri' 4DS kromoszómáján térképezett RhtD1b törpeségi állélé és beépítésének eredménye, mivel az árpában található sdw1 felületére kódoló gént a 3H kromoszóma hosszú karjára térképeztek Chloupek és mtsai (2006) az általuk vizsgált vonalakban.

A jelen kísérlet azt bizonyítja, hogy egy búza/idegen fajú transzlokáció esetén (3HS.3BL/Bodri) a búza genetikai háttérnek meghatározó szerepe van az agronómiai
tulajdonságok kialakulásában. A 3HS.3BL kompenzáló transzlakció introgressziója az 'Mv Bodri' modern martonvásári búza genetikai hátterébe kedvező hatással volt a termékeny hajtások kialakításában és a növényenkénti szemszám alakulásában, az eredeti 3HS.3BL/CS/Mv9kr1 transzlakcióval szemben. A centrikus fúzió introgressziója növelte a búzaszülő bokrosodási képességét. A búza/idegen fajú transzlakciók esetében a búza genetikai háttér kicserélődése egy modern, kiemelkedő agronómiai tulajdonságokkal rendelkező búzafajtával egyértelműen növeli az előállított vonalak agronómiai értékét.

4.3. Az Mv9kr1/A. glael hibrid búzával keresztezett utódainak vizsgálata

4.3.1. Búza/Agropyron glael terminális transzlakciós vonal kiválogatása az 'Mv Karizma' búzafajtával keresztezett növények utódai közül

A CS búzafajtával keresztezett hibrid utódait 2012-2013-ban felszaporítottuk a búzanemesítők lászlópusztai tenyészkerületében és kereszrezéseket végeztünk a Mv9kr1/A.
30. ábra. Az Mv9kr1/Agropyron glael//CS/3/Mv Karizma/4/Mv Karizma kombinációjú
genotípus öntermékenyített utódainak GISH elemzése Pseudoroegneria spicata digoxigeninellen
jelölt genomi DNS próbával. Az St genomhoz tartozó kromoszómák biborvörös színben
világítanak (nyilak). Skála=10µm.

Citológiai szám: az első két számjegye a csíráztatás éve, a többi számjegy a növény sorszáma az adott évben.

<table>
<thead>
<tr>
<th>Kombináció</th>
<th>Citológiai szám</th>
<th>Vizsgált szemek száma</th>
<th>Összes kromoszómák száma</th>
<th>Búza/Thinopyrum transzlokáció előfordulása (növényszám)</th>
<th>Th. kromoszómák származása</th>
<th>A Th. kromoszómák száma pontosan nem meghatározható (növényszám)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mv9kr1/A. glael/CS/3/Mv9kr1</td>
<td>151698-151730</td>
<td>33</td>
<td>18</td>
<td>10</td>
<td>21</td>
<td>St genom</td>
</tr>
<tr>
<td>Mv9kr1/A. glael/CS/3/Mv Karizma/4/Mv Karizma</td>
<td>153356-153421</td>
<td>66</td>
<td>44</td>
<td>22</td>
<td>28</td>
<td>St genom</td>
</tr>
<tr>
<td>Mv9kr1/A. glael/CS/3/Mv9kr1</td>
<td>153742-153801</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>14</td>
<td>St genom</td>
</tr>
<tr>
<td>Mv9kr1/A. glael/CS/3/Mv9kr1</td>
<td>154143-154192</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>J genom</td>
</tr>
<tr>
<td>Mv9kr1/A. glael/CS/3/Mv Karizma/4/Mv Karizma</td>
<td>161401-161460</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>32</td>
<td>St genom</td>
</tr>
</tbody>
</table>
4.3.2. A búza/ tarackbúza terminális transzlokációt (6DL.6DS-St) hordozó vonalak vizsgálata molekuláris markerekkel

A kontrollként használt genotípusokat Nannong 02Y23 (búza kontroll, Pm21 forrás), CS, Mv9kr1 és 'Mv Karizma’, Pseudoroegneria spicata (St), Th. bessarabicum (Jb), Th. elongatum (E) és Th. intermedium (JJ’St), illetve a GISH-sel azonosított terminális transzlokációt hordozó, egyedi citológiai számmal ellátott genotípusokat (161402 és 161407) és búza/Agropyron centrikus fúziót hordozó (161419 és 161434 citológiai számú) növényeket molekuláris markerek jelenlétére teszteltük. Kísérleteink során 3 molekuláris marker jelenlétét követtük nyomon: a Haynaldia villosa eredetű, Pm21 lisztharmat-rezisztencia génnel kapcsolt Pm21D és Pm21E primerpárral felszaporított SCAR markert, a Th. intermedium-ban azonosított PmL962 génnel kapcsolt BE443737 kodomináns EST-STS markert, és a Th. ponticum-ban leírt Lr38 markerek jelenlétét.

A Pm21 marker jelenlétének bizonyítására pozitív kontrollként Nannong 02Y23 búzavonalat alkalmaztunk (Pm21 forrás). A Pm21D és Pm21E primerpár egy 1265bp hosszúságú terméket amplifikált a Nannong02Y23 búzavonalnál, illetve a Th. intermedium-nál, arra utalva, hogy ezekben a genotípusokban jelen van a Pm21 gén, míg a terminális transzlokációt hordozó növények (161402 és 161407) nem tartalmazzák a Pm21 lisztharmat-rezisztenciagént (32. ábra).

![Pm21 Marker](image)

32. ábra. Az Pm21 specifikus SCAR marker agaróz gél-elektroforézis mintázata a következő DNS templátonk: Nannong 02Y23 búzavonal, CS búzafajta, Mv9kr1 búzatörzs, 'Mv Karizma’ búzafajta, Pseudoroegneria spicata (St), T. bessarabicum (Jb) Th elongatum (E), Th.
intermedium (JJ*St*), 161402, 161407, 161419 és 161434 citológiai számú genotípusok. A *Pm21* allél specifikus termékeket nyilakkal jelöltük. 100 bp-os létrát alkalmaztunk a fragmentek hosszúságának meghatározására.

A *PmL962* gén jelenlétét a BE443737 EST-STS marker alkalmazásával követtük nyomon. Ez a génhez legközelebb térképezett kodomináns marker, amely agaróz gélen szétválasztható (Shen és mtsai, 2015). A BE443737F és BE443737R primerpár a várt hosszúságú fragmenteket amplifikálta a *Pseudoroegneria spicata*, *Th. elongatum*, *Th. bessarabicum*, *Th. intermedium* genotípusok esetében, arra utalva hogy ezekben jelen van a *PmL962* lisztharmat-rezisztenciagn. A búza kontroll genotípusokban és az átrendeződött kromoszómákat hordozó növényekben (161402 161407, 161419 és 161434 citológia számú növények) *PmL962* specifikus termék nem volt kimutatható. A *PmL962* gén kimutatására végzett molekuláris vizsgálat eredményei a 33. ábrán láthatóak.

![PmL962 EST-STS marker agaróz gél-elektroforézis mintázata](image)

33. ábra. Az *PmL962* specifikus EST-STS markerek agaróz gél-elektroforézis mintázata a következő DNS templátokon: Nannong 02Y23 búzavona, CS búzafajta, Mv9kr1 búzatörzs, 'Mv Karizma' búzafajta, *Pseudoroegneria spicata* (St), *Th. elongatum* (E), *Th. bessarabicum* (Jb), *Th. intermedium* (JJ*St*), 161402, 161407, 161419 és 161434 citológiai számú genotípusok. A *PmL962* specifikus termékeket nyilakkal jelöltük. 100 bp-os létrát alkalmaztunk a fragmentek hosszúságának meghatározására.
Az Lr38 gén kimutatására a génnel kapcsolt Y38SCAR\textsubscript{982} markert használtunk (Yan és mtsai, 2008). Cshe András személyes közlése alapján ez a marker a Th.bessarabicum addiciós sorozat (1b-7b) mind a hét tagján azonos meretű Jb genotípus termékeit ad. A Th. intermedium-ból származó Lr38 génhez kapcsolt markerre kifejlesztett primerpárok egy 982 bp hosszúságú terméket amplifikáltak mindhárom Thinopyrum faj esetében (Th.bessarabicum, Th. elongatum, Th.intermedium) és a búza/Thinopyrum transzlokációt hordozó genotípusoknál is (161402, 161407, 161419, 161434), arra utalva, hogy ezekben bent van a Jb genotípus eredetű kromoszóma fragmentum. A búza kontroll genotípusoknál és Pseudoroegneria spicata DNS minta esetében a gél-elektroforézis során nem kaptunk specifikus terméket (34. ábra).

34. ábra. Az Lr38 specifikus SCAR marker agaróz gél-elektroforézis mintázata a következő DNS templátokon: 'Nannong 02Y23’ búzavonal, CS búzafajta, Mv9kr1búzafajta, Mv Karizma’ búzafajta, Pseudoroegneria spicata (St), Th.bessarabicum (Jb), Th. elongatum (E), Th. intermedium, (JbSt), 161402,161407, 161419 és 161434 citológiai számú genotípusok. Az Lr38 specifikus termékeket nyilakkal jelöltük. 100 bp-os létrát alkalmaztunk a fragmentek méretének meghatározására.
4.3.3. A búza/Agropyron glael hibrid 'Mv Karizma' búzafajtával keresztezett utódnövényei közül szelektált terminális transzlokációt (6DL.6DS-?St) hordozó vonal jellemzése

A búza harmadlagos génforrásaihoz tartozó Thinopyrum fajokból számos betegség rezisztenciagént vitték át a termesztett búzába. Az Agropyron glael-t (szintetikus fajhibrid: T. intermediate × Th. ponticum) kiváló lelevelrozsda-rezisztenciájának köszönhetően több mint 15 évvel ezelőtt Dr. Lángné Dr. Molnár Márta olyan keresztezési programba vonta be, amelynek célja a betegség-ellenállóságnak átvitelle a kenyérbúzákba. A keresztezésekben anyai partnerként az Mv9kr1 búzatörzset használták, amely recesszív kr1 keresztezhetőségi allélt hordoz, ezért a keresztezések során ezzel a vonallal az átlagosnál nagyobb mértékű szemkötés érhető el (Molnár-Láng és mtsai, 2010). Az Mv9kr1 búzavonal lelevelrozsára fogékony, így az A. glael-ből származó rezisztencia-gének sikeres átvitele az utódnövényekben nyomonkövethető. A BC₁ növények előállítása céljából az Mv9kr1 × Agropyron glael hibridet CS búzafajtával keresztezték, ebből a keresztezénszövet két növényt állítottak elő, amelyek közül az egyik steril volt, így minden utódvonal egy anyanövényből származik. A BC₂ növények előállításához beporzóként két genotípusot használtak: az Mv9kr1 búzavonalat, illetve a martonvásári nemesítésű 'Mv Karizma' járóbúza-fajtát (8. táblázat). A visszakeresztezések célja a Thinopyrum fajokból származó kromoszómák számának a csökkentése és olyan introgressziós vonalak előállítása, amelyek az idegen kromatínból származó kisméretű szegmentumot hordoznak. Fontos gayakorlati célkitűzés, hogy csak hasznos agronómiai tulajdonságokat meghatározó gének átvitelére kerüljön sor.

Az 'Mv Karizmá’-val történő keresztezésből származó F₃ növények utódai között mcGISH vizsgálattal detektáltunk két, diszómás 6DL.6DS-?St terminális transzlokációt hordozó növényt. Az utódnövények vizsgála kimutatta, hogy a transzlokáció stabilan örökliődik. Az évelő Triticeae fajok genomjai közül a tarackbúzafélék J és E genomja áll a legközelebbi rokonságban a hexaploid búzával (Hsiao és mtsai, 1995; Liu és mtsai, 2007, Linc és mtsai, 2017). A J genom a búza D genomjával mutatja a legnagyobb hasonlóságot (Liu és mtsai, 2007), a búza/Thinopyrum introgressziós vonalak gyakrabban hordoznak D, mint A vagy B genomhoz tartozó kromoszómát, ill. kromoszómakart (Qi és mtsai, 2007). Az általunk előállított transzlokációs vonalnál a GISH elemzés során a búza 6D kromoszómájának terminális szegmentumához transzlokálódott Thinopyrum kromoszóma szegmentum detektálása során piros fluoreszcens jelet kaptunk, ami utalhat a Thinopyrum szegmentum St vagy JSt eredetére vagy egy St/JSt transzlokációra. A digoxineninnel jelölt St genom detektálását követően a jelölt próba nem csak az St genomhoz,
hanem a 1st terminális kromoszóma szegmentumaihoz is hibridizálódik (Kruppa, 2016). Azonban a a Lr38 génnel kapcsolt Y38SCAR982 marker kimutatására végzett vizsgálat kizárta a marker jelenlétét a P. spicata-ban (St genom), ezért a GISH vizsgálatokon kapott eredmények ellenére (a transzlokációs kromoszóma terminális szakasza piros fluoreszcens jelet adott) valószínűsíthető a transzlokálódott kromoszóma szegmentum Jb genomi eredete.

Az intergressziók előállításának elsődleges célja különböző betegség-rezisztenciagények átvitele a búzába a rokon vad fajokból. A keresztezéseket követően a növényeket gombabetegségekre felvételeztük, és azoknak a növényeknek az utódait vittük tovább, amelyek a tenyészkerti spontán fertőzésekkel szemben ellenállóak voltak. A terminális transzlokációt hordozó növények levéloroszda-rezisztens szülőktől származnak, azonban az előállított vonalak levéloroszda rezisztenciáját mesterséges fertőzéssel még nem tudtuk bizonyítani. A fitotroni növénynevelő kamrában felszaporítható növényeknél egy spontán liszharmatfertőzést figyeltünk meg. Az Agropyron-ból származó kromoszóma szegmentumokat hordozó növények (6DL.6DS?St) liszharmattal nem fertőződtek, a búza genotípusok közül erős fertőzöttséget figyeltünk meg a CS fajtánál és az MV9kr1 búzatörzsnél, miközben az 'Mv Kariza' liszharmattal csak enyhén fertőződött (35. és 36. ábra). A molekuláris markeres vizsgálatok során a PmL962, Pm21 és Lr38 génekhez kapcsolt különböző markerek jelenlétét követtük nyomon, amit a szülői generáció levéloroszda-rezisztenciája és a transzlokációs vonalak spontán liszharmat-fertőzöttséggel szembeni ellenállóság indokolt.

A Thinopyrum intermedium eredetű Lr38 génhez kapcsolt SCAR marker jelenlétét gél-elektroforézissel mutattuk ki a vizsgálatba vont Thinopyrum fajoknál (Th. bessarabicum, Th. elongatum, Th. intermedium) és az előállított búza/Thinopyrum transzlokációs vonalaknál (161402, 161407, 161419 és 161434 citológiai számú növényeknél). Cseh András személyes közlése alapján az Lr38 génhez kapcsolt vizsgált marker Th. bessarabicum teloméra specifius marker, amely kimutatható minden búza/Th. bessarabicum addiciónál, illetve néhány teloszómás addiciónál. Az Lr38 jelenléte a transzlokációs vonalaknál bizonyítja, hogy ezekben a vonalakban a Thinopyrum kromoszóma szegmentum teloméra eredetú.

4.5. Új tudományos eredmények

1. Az 'Asakaze'/Manasz' büza/árpa addíciós vonalakból előállítottunk egy diteloszómás addíciós sorozatot, amely a következő árpa kromoszómakarokat tartalmazza: 2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS, 7HL.

2. Megfigyeltük, hogy a diteloszómás és diszómás vonalak közül a 7HL kromoszómakart hordozó vonal virágzik a legkorábban, míg a 6HS, 6HL és 6H kromoszómát vagy kromoszómakarokat tartalmazó vonalak a legkésőbb.

3. Csírázási kísérletekkel végzett sötürési kísérletekben bebizonyítottuk a 7HL diteloszóma jobb sötürését a búza szülői genotípusoknál.

4. A 3HS.3BL spontán transzlokáció 'Mv Bodri' búzafajtával történő keresztezésével új genetikai variabilitást hoztunk létre, és így javítottuk a transzlokációs vonal agrómiai tulajdonságait a kiindulási vonalhoz képest. A növények közül olyan vonalakat szelektáltunk, amelyek egyidejűleg hordozzák az 'Mv Bodri' félörpe fajtából származó RhtD1b törpeségi állélt és a 3HS.3BL centrikus fúziót, az agrómiai tulajdonságok szempontjából pedig jobb paramétereket mutatnak az eredeti transzlokációs vonalhoz képest.

5. Az Mv9kr1/A.glael hibrid termesztett búzával történő visszakeresztesével csökkentettük a Thinopyrumból származó kromatin mennyiségét. Az Mv9kr1/A.glael hibrid búzával többször visszakeresztettek, 269 citológiai vizsgált utódai közül addíciókat, szubsztitúciókat és transzlokációs vonalakat szelektáltunk, közülük egy 42 kromoszómás terminális transzlokációt, amelyet 6DL.6DS-?St terminális transzlokációként azonosítottunk.

6. A 6DL.6DS-?St terminális transzlokáció molekuláris markeres vizsgálata során kimutattuk a Lr38 génhez kapcsolt Y38SCAR982 marker jelenlétét, és bizonyítottuk a transzlokálódott Thinopyrum kromoszóma szegmentum teloméra eredetét.
5. Következtetések és javaslatok

Búza/árpa diteloszómás addíciós vonalak

3HS.3BL/Bodri búza/árpa transzlokációs vonalak

Búza/Agropyron glael introgressziós vonalak

6. Összefoglalás

Napjaink gabonanemesítésének egyik fő feladata a termésbiztonság növelése. Az élelmiszertermelést és termésbiztonságot nagymértékben befolyásolja a biodiverzitás megőrzése és a génforrások előrelátó felhasználása. A gabonafélék és vad rokon fajok a termésbiztonséhez klasszikus és biotechnológiai módszerek alkalmazásával. A modern búzafajták kiváló termőképességűek, az újabb nemesítési programok főleg a jobb beltartalmi minőségű (léleki rostok, létfontosságú aminosavak), kiemelkedő betegségellenállóságú és jobb alkalmazkodóképességű fajták nemesítését helyezik előtérbe. PhD kutatásom célja olyan búza/idegen fajú addíciós és introgressziós vonalak előállítása volt, melyek a búzával rokon természetett és vad fajokból származó kromoszómákat, szegmentumokat tartalmaznak és agronómiaiág kiemelkedő tulajdonságokkal rendelkeznek. Ezek a vonalak felhasználhatók mind az alap kutatásban (idegen fajból származó gének térképezése és expressziójuk tanulmányozása a búza genetikai hátterében, genetikai és evolúciós vizsgálatok), mind pedig a növénynemesítésben (hasznos gének introgressziója a recipiens fajokba).

Az 'Asakaze'/ 'Manasz' búza/arpa diteloszómás addíciós vonalak előállítása során az egyes árpa kromoszómakarok jelenlétéit GISH-sel mutattuk ki, majd pontos azonosításukra SSR és STS markeres vizsgálatokat végeztünk. A vonalak felszaporitása után vizsgáltuk az egyes árpa kromoszómakarok jelenlétének hatását a genotípusok agronómiaiág pontos tulajdonságáira. Az öszi árpa az öszi búzánál általában egy héttel korábban aratható, ami a korai aszályos időszakban kedvezőbb szemfejlődést eredményezhet. A diteloszómás vonalak közül a 7HL kromoszómakart hordozó genotípus hamarabb virágzik a búza kontrollnál, míg a 6H kromoszómát vagy egyik 6H kromoszómakart hordozó vonalak legkésőbben virágzanak. A diteloszómás sorozat sóstressz vizsgálata kimutatta, hogy a 7HL addíció magasabb sóstressz toleranciát mutatott mind csíranövény korban, mind korai fejlődési szakaszban, mint a búzaszülők (‘Asakaze’ és CS). A diszómás és diteloszómás addíciós vonalak felhasználhatók búza/idegen fajú transzlokációs vonalak előállítására, amelyek az addícióknál sokkal stabillabbak.

A 3HS.3BL/CS/Mv9kr1 Robertsoni transzlokációs vonal agronómiai tulajdonságainak javítása céljából a vonalat keresztetünk az 'Mv Bodri' búzafajtával. A 3HS.3BL transzlokáció introgressziója egy modern, jó termőképességű fajtába szignifikánsan csökkentette a növények magasságát, ami az RhtD1b 'Mv Bodri'-ból származó törpeséget okozó allél beépítésének köszönhető. A 3HS.3BL transzlokáció jelenléte az előállított genotípusokban javította a
növények bokrosodási képességét és a növényenkénti szemszámot tenyészkertben több éven keresztül végzett kísérleteink során.

7. Summary

One of the main challenges of current crop breeding is to improve yield stability. Along with food production, it is highly influenced by the conservation of biodiversity and responsible use of genetic resources. The crop plants and their wild relatives comprise the genetic variability that can be used as raw material for breeding new cultivars through classical and biotechnological methods. The modern wheat cultivars have excellent yield potential, and the new breeding programs put emphasis on breeding cultivars with better nutritional components (e.g. dietary fibres, essential amino acids), high resistance against diseases and better capacity of adaptation. The aim of my PhD work was to develop wheat/alien introgression lines that possess better agronomic traits originated from cultivated and wild relatives of wheat. These lines can be used for basic research (mapping and studying the expression of genes originated from alien species in the wheat genetic background, evolutionary studies) and for plant breeding (transfer of useful genes into the recipient species).

During the development of ‘Asakaze’/’Manasz’ wheat/barley ditelosomic addition lines the presence of the barley chromosome arm was detected by GISH, and then they were precisely identified with SSR and STS markers. After propagating the lines the effect of the barley chromosome arms on each genotype was analysed. The winter barley usually can be harvested a week earlier than the winter wheat, which can provide a better seed development. Among the ditelosomic addition lines the genotype carrying the 7HL chromosome arm flowered earlier than the control wheat genotypes, while the lines containing the 6H chromosome or one of its arms flowered the latest. Salt stress analysis of the ditelosomic addition lines showed higher salt stress tolerance at 7HL line than at the wheat parents (CS and ‘Asakaze’) both at seedling and at early developmental stages. The disomic and ditelosomic addition lines can be used for developing wheat/alien translocation lines, which are more stable than the additions.

For improving the agronomic traits of the 3HS.3BL/CS/Mv9kr1 Robertsonian translocation line, a cross of it was achieved with ‘Mv Bodri’ wheat cultivar. The introgression of the 3HS.3BL translocation into the modern wheat cultivar ‘Mv Bodri’ significantly reduced the plant height due to the incorporation of the dwarfing allele $RhtD1b$ originated from ‘Mv Bodri’. The presence of the 3HS.3BL translocation in the Mv9kr1 and ‘MvBodri’ wheat background improved tillering and seeds/plant productivity in field experiments carried out during several years in the Martonvásár nursery.

Lines resistant to leaf rust were selected in nursery experiments from backcrossed, self-fertilised progeny generations of the Mv9kr1/A. glael hybrid. For decreasing the number of chromosomes originated from Thinopyrum more backcrosses were carried out with Mv9kr1
wheat line and ‘Mv Karizma’ wheat cultivar, then the progenies were analysed with molecular cytogenetic methods. Different wheat/Thinopyrum addition, substitution and introgression lines were identified using mcGISH technique. The lines analysed carried between 42 and 52 chromosomes. A wheat/Thinopyrum terminal translocation line was selected from the BC₃ generation. The introgressed chromosome segment is derived from Thinopyrum. The terminal translocation was identified as a 6DL.6DS-?St translocation using FISH with wheat specific DNA repetitive probes (pSc119,2, Afa family and pTa71). The Lr38 telomere-specific marker originated from Thinopyrum was detected in the translocation line. Artificial inoculation of these lines with leaf rust is necessary in order to confirm the leaf rust resistance of the translocation line. The powdery mildew resistance of the translocation line observed against a spontaneous infection explained the molecular background analysis of powdery mildew resistance of these genotypes. The presence of the two powdery mildew resistance genes analysed with molecular markers (Pm21 and PmL962) was excluded. The sensibility of the wheat control genotypes definitely indicates a resistance originated from Thinopyrum. The results of our experiments unequivocally confirm that the genetic material originated from the Mv9kr1/A. glael hybrid serves as an estimable genepool for resistance breeding.
8. Mellékletek

M1.

IRODALOMJEGYZÉK

http://www.keh.hu/magyarorszag_alaptorvenye/1515
Magyarorszag_Alaportorvenye&pnr=1.

Z. Pflanzenzüchtung 64: 44–72.

http://www.tankonyvtar.hu/hu/tartalom/tamop425/0010 1A Book 03
Novenygenetika/ch12.html

MARTONVÁSÁRI FAJTAKATALÓGUS 2015-2016, MTA Agrártudományi Kutatóközpont, Mezőgazdasági Intézet.

Vavilov’s ideas in the modern world. III Vavilov International Conference, 6–9 November 2012 St. Petersburg.

M2. A búza/árpa diteloszómás addíciós vonalak kiválogatása során vizsgált növényekben az egyes árpakromoszóma-karok előfordulásának gyakorisága

<table>
<thead>
<tr>
<th>Genotípus</th>
<th>A kimutatott árpakromoszómák a levizsgált szemekben</th>
<th>2 telocentrikus kromoszóma</th>
<th>1 telocentrikus kromoszóma</th>
<th>Egyéb</th>
<th>Az árpa kromoszómák eliminálódottak</th>
<th>Vizsgált szemek száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>2HS</td>
<td></td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>2HL</td>
<td></td>
<td>19</td>
<td>4</td>
<td>6</td>
<td>17</td>
<td>46</td>
</tr>
<tr>
<td>3HS</td>
<td></td>
<td>51</td>
<td>19</td>
<td>1</td>
<td>38</td>
<td>109</td>
</tr>
<tr>
<td>3HL</td>
<td></td>
<td>12</td>
<td>24</td>
<td>3</td>
<td>86</td>
<td>125</td>
</tr>
<tr>
<td>4HS</td>
<td></td>
<td>33</td>
<td>45</td>
<td>1</td>
<td>115</td>
<td>194</td>
</tr>
<tr>
<td>4HL</td>
<td></td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>49</td>
</tr>
<tr>
<td>6HS</td>
<td></td>
<td>13</td>
<td>19</td>
<td>25</td>
<td>56</td>
<td>113</td>
</tr>
<tr>
<td>6HL</td>
<td></td>
<td>29</td>
<td>13</td>
<td>0</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7HS</td>
<td></td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>7HL</td>
<td></td>
<td>53</td>
<td>17</td>
<td>6</td>
<td>39</td>
<td>115</td>
</tr>
<tr>
<td>∑</td>
<td></td>
<td>260</td>
<td>163</td>
<td>42</td>
<td>395</td>
<td>860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2013. Fitotron</th>
<th>Növénymagasság (cm)</th>
<th>Bokrosodás</th>
<th>Főkalász hossza (cm)</th>
<th>Szem/növény</th>
<th>Szem/főkalázs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2HS</td>
<td>75,90±6,06</td>
<td>3,30±0,48</td>
<td>7,35±0,74</td>
<td>104,30±21,75</td>
<td>40,80±5,51</td>
</tr>
<tr>
<td>2HL</td>
<td>76,20±3,52</td>
<td>3,30±0,48</td>
<td>6,90±0,39</td>
<td>102,30±17,04</td>
<td>36,80±6,59</td>
</tr>
<tr>
<td>3HS</td>
<td>79,50±5,40</td>
<td>3,20±0,63</td>
<td>7,95±0,43</td>
<td>97,40±13,30</td>
<td>39,40±9,44</td>
</tr>
<tr>
<td>3HL</td>
<td>81,90±3,35</td>
<td>3,00±0,82</td>
<td>5,87±0,57</td>
<td>78,30±19,77</td>
<td>33,50±5,85</td>
</tr>
<tr>
<td>4HS</td>
<td>87,80±4,21</td>
<td>2,40±0,51</td>
<td>7,40±0,56</td>
<td>111,10±12,48</td>
<td>54,70±7,19</td>
</tr>
<tr>
<td>4HL</td>
<td>55,10±3,51</td>
<td>2,40±0,84</td>
<td>7,90±1,04</td>
<td>101,90±20,35</td>
<td>52,30±14,02</td>
</tr>
<tr>
<td>6HS</td>
<td>72,70±5,81</td>
<td>3,90±0,74</td>
<td>10,40±1,45</td>
<td>110,40±36,07</td>
<td>45,50±13,25</td>
</tr>
<tr>
<td>6HL</td>
<td>82,90±9,24</td>
<td>2,90±0,56</td>
<td>8,50±0,57</td>
<td>85,90±13,06</td>
<td>37,20±7,23</td>
</tr>
<tr>
<td>7HS</td>
<td>80,50±12,85</td>
<td>2,90±0,87</td>
<td>10,00±1,88</td>
<td>61,50±40,06</td>
<td>26,90±17,14</td>
</tr>
<tr>
<td>7HL</td>
<td>71,80±8,97</td>
<td>4,10±0,73</td>
<td>6,35±0,88</td>
<td>48,10±26,92</td>
<td>18,10±9,07</td>
</tr>
<tr>
<td>2H</td>
<td>67,60±7,89</td>
<td>4,20±0,63</td>
<td>7,20±0,53</td>
<td>66,30±32,09</td>
<td>31,30±9,50</td>
</tr>
<tr>
<td>3H</td>
<td>75,90±11,52</td>
<td>3,30±0,48</td>
<td>8,40±1,46</td>
<td>97,80±22,81</td>
<td>34,90±2,60</td>
</tr>
<tr>
<td>4H</td>
<td>78,75±2,06</td>
<td>3,00±0,00</td>
<td>8,75±0,64</td>
<td>80,75±52,97</td>
<td>21,91±14,36</td>
</tr>
<tr>
<td>6H</td>
<td>76,80±4,00</td>
<td>3,20±0,63</td>
<td>8,95±0,59</td>
<td>75,20±15,10</td>
<td>29,80±6,12</td>
</tr>
<tr>
<td>7H</td>
<td>67,50±5,14</td>
<td>3,20±0,78</td>
<td>8,50±1,00</td>
<td>59,20±22,04</td>
<td>21,40±8,08</td>
</tr>
</tbody>
</table>

’Asakaze’ 74,60±4,52 2,00±0,47 9,80±0,54 82,20±13,98 45,60±4,78
‘Chinese Spring’ 85,30±5,57 3,10±0,31 6,35±0,47 111,40±10,81 47,30±3,59

126
M4. 'Asakaze'/ 'Manasz' búza/ árpa díteselőzomás addíciós vonalak, diszómás addíciós vonalak és búza szülei genotípusok ('Asakaze' és CS búzafajták) morfológiai tulajdonságai a martonvásári Tükrös tenyészkerületben 2014-2015 vegetációs időszakban:

- szignifikánsan különbözik az 'Asakaze' búzafajtától,
- szignifikánsan különbözik a CS búzafajtától,
- szignifikánsan különbözik az 'Asakaze' és CS búzafajtaktól (P = 0,05% szignifikancia szinten)

<table>
<thead>
<tr>
<th>2015. Tükrös</th>
<th>Növénymagasság (cm)</th>
<th>Bokrosodás</th>
<th>Főkalász hossza (cm)</th>
<th>Szem/növény</th>
<th>Szem/főkalász</th>
<th>Ezerszem tömeg (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2HS</td>
<td>83,10±8.07</td>
<td>6,20±2.04</td>
<td>7,15±0,82</td>
<td>232,40±104,19</td>
<td>44,7±11,38</td>
<td>28,90</td>
</tr>
<tr>
<td>2HL</td>
<td>89,10±9,58</td>
<td>5,90±1,17</td>
<td>7,75±0,95</td>
<td>237,70±95,39</td>
<td>51,7±11,62</td>
<td>23,80</td>
</tr>
<tr>
<td>3HS</td>
<td>96,10±6,85</td>
<td>6,70±1,25</td>
<td>8,90±1,26</td>
<td>267,90±95,00</td>
<td>49,0±8,33</td>
<td>29,80</td>
</tr>
<tr>
<td>3HL</td>
<td>98,80±5,03</td>
<td>8,20±2,14</td>
<td>6,85±0,94</td>
<td>288,00±120,47</td>
<td>41,9±11,82</td>
<td>34,30</td>
</tr>
<tr>
<td>4HS</td>
<td>106,40±6,20</td>
<td>5,40±1,17</td>
<td>7,20±0,82</td>
<td>269,50±99,36</td>
<td>56,5±14,65</td>
<td>32,50</td>
</tr>
<tr>
<td>4HL</td>
<td>79,00±8,64</td>
<td>6,40±1,83</td>
<td>8,15±0,91</td>
<td>365,40±151,17</td>
<td>70,3±10,57</td>
<td>28,90</td>
</tr>
<tr>
<td>6HS</td>
<td>102,10±4,63</td>
<td>5,70±1,83</td>
<td>8,90±1,13</td>
<td>253,50±91,87</td>
<td>54,5±8,63</td>
<td>33,70</td>
</tr>
<tr>
<td>6HL</td>
<td>112,90±7,17</td>
<td>5,80±2,04</td>
<td>9,05±1,06</td>
<td>264,30±105,49</td>
<td>50,2±10,11</td>
<td>37,20</td>
</tr>
<tr>
<td>7HS</td>
<td>100,50±6,22</td>
<td>7,20±2,34</td>
<td>9,80±1,20</td>
<td>312,20±126,77</td>
<td>53,1±11,63</td>
<td>33,50</td>
</tr>
<tr>
<td>7HL</td>
<td>96,20±9,46</td>
<td>5,80±1,32</td>
<td>6,30±0,88</td>
<td>191,90±54,67</td>
<td>37,4±8,23</td>
<td>27,40</td>
</tr>
<tr>
<td>2H</td>
<td>99,40±7,69</td>
<td>7,60±3,02</td>
<td>7,90±0,93</td>
<td>317,70±161,07</td>
<td>47,1±9,08</td>
<td>36,10</td>
</tr>
<tr>
<td>3H</td>
<td>105,70±5,69</td>
<td>7,50±1,90</td>
<td>9,30±1,25</td>
<td>422,50±160,70</td>
<td>59,2±16,93</td>
<td>35,40</td>
</tr>
<tr>
<td>4H</td>
<td>93,70±8,30</td>
<td>5,70±2,11</td>
<td>8,35±0,78</td>
<td>363,00±151,64</td>
<td>71,1±5,20</td>
<td>30,00</td>
</tr>
<tr>
<td>6H</td>
<td>91,60±5,81</td>
<td>7,80±2,82</td>
<td>8,80±0,67</td>
<td>351,60±143,12</td>
<td>55,1±4,25</td>
<td>32,60</td>
</tr>
<tr>
<td>7H</td>
<td>79,70±4,05</td>
<td>8,80±2,14</td>
<td>8,40±0,81</td>
<td>283,40±122,85</td>
<td>38,3±9,36</td>
<td>29,40</td>
</tr>
<tr>
<td>'Asakaze'</td>
<td>88,40±3,10</td>
<td>7,80±1,93</td>
<td>8,40±0,70</td>
<td>279,10±97,90</td>
<td>44,0±4,64</td>
<td>32,40</td>
</tr>
<tr>
<td>'Chinese Spring'</td>
<td>89,10±4,90</td>
<td>7,00±1,70</td>
<td>6,75±0,59</td>
<td>313,40±117,05</td>
<td>47,4±8,22</td>
<td>32,30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotípus</th>
<th>2HS</th>
<th>2HL</th>
<th>2H</th>
<th>3HS</th>
<th>3HL</th>
<th>3H</th>
<th>4HS</th>
<th>4HL</th>
<th>4H</th>
<th>6HS</th>
<th>6HL</th>
<th>6H</th>
<th>7HS</th>
<th>7HL</th>
<th>7H</th>
<th>Asakaze'</th>
<th>CS</th>
<th>'Manasz'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vízállás átlaga</td>
<td>132,4*,†</td>
<td>131,6*,†</td>
<td>129,8</td>
<td>129,2#</td>
<td>130,3*</td>
<td>130*</td>
<td>132,5*,#</td>
<td>128,8#</td>
<td>130,8*</td>
<td>134,2*,#</td>
<td>134,5*,#</td>
<td>136*</td>
<td>129,4#</td>
<td>128,7#</td>
<td>128,3#</td>
<td>129</td>
<td>130,4</td>
<td>124,7</td>
</tr>
<tr>
<td>Szórás</td>
<td>1,35</td>
<td>1,26</td>
<td>1,13</td>
<td>1,14</td>
<td>1,34</td>
<td>0,67</td>
<td>0,97</td>
<td>1,31</td>
<td>0,42</td>
<td>1,14</td>
<td>1,59</td>
<td>0,81</td>
<td>0,7</td>
<td>1,16</td>
<td>0,67</td>
<td>0,81</td>
<td>1,07</td>
<td>0,82</td>
</tr>
</tbody>
</table>

* Szignifikánsan különbözik az 'Asakaze' búzafajtától (P=0,05% szignifikancia szinten)

† Szignifikánsan különbözik a 'Chinese Spring' búzafajtától (P=0,05% szignifikancia szinten)

‡ Szignifikánsan különbözik a 2H addiciós vonaltól (P=0,05% szignifikancia szinten)
M6. A söstresz hatása az 'Asakaze'/Manas' ditekoszómás adicció vonalak, 'Asakaze' és 'Manas' szülei genotípusok csirázási képességére: csirázás (%), gyökérhossz (cm), hajtáshossz (cm), gyökértőmég (mg/növények), hajtástroy (mg/növények)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>2HS</th>
<th>2HL</th>
<th>3HS</th>
<th>3HL</th>
<th>4HS</th>
<th>4HL</th>
<th>6HS</th>
<th>6HL</th>
<th>7HS</th>
<th>7HL</th>
<th>Manas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>100 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>200 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>250 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>100 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>200 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>250 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

Az adatok átlaga (n=60) mellett feltüntettük a szórást (±) is minden egyes kezelésnél. A szignifikáns

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>2HS</th>
<th>2HL</th>
<th>3HS</th>
<th>3HL</th>
<th>4HS</th>
<th>4HL</th>
<th>6HS</th>
<th>6HL</th>
<th>7HS</th>
<th>7HL</th>
<th>Manas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>100 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>200 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>250 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>2HS</th>
<th>2HL</th>
<th>3HS</th>
<th>3HL</th>
<th>4HS</th>
<th>4HL</th>
<th>6HS</th>
<th>6HL</th>
<th>7HS</th>
<th>7HL</th>
<th>Manas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>100 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>200 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>250 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>2HS</th>
<th>2HL</th>
<th>3HS</th>
<th>3HL</th>
<th>4HS</th>
<th>4HL</th>
<th>6HS</th>
<th>6HL</th>
<th>7HS</th>
<th>7HL</th>
<th>Manas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>100 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>200 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>250 mM</td>
<td>±0</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

129
különbségeket a Tukey post hoc teszt segítségével határoztuk meg. A különböző betűk a genotípusok közötti szignifikáns különbséget jelölik (P= 0.05% szignifikancia szinten). Erős stressz esetén a sóstressz által előidézett drasztikus gátlás nem tett lehetővé érdemi statisztikai elemzést a genotípusok között, ezért ezt "-" jel jelöltük.
M7. A két 3HS.3BL/Bodri testvér vonal (I vonal- szálkacsonkos, II vonal-tar), és a búza szülői genotípusok ('Mv Bodri' és CS fajta, Mv9kr1 búzatörzs) morfológiai adatai a martonvásári organikus tenyészketben a 2012-2013 vegetációs időszakban

<table>
<thead>
<tr>
<th>Genotípus</th>
<th>Növénymagasság (cm)</th>
<th>Bokrosodás szem/kalász</th>
<th>Szem/kalász</th>
<th>Szem/növény</th>
<th>Főkalász hossza (cm)</th>
<th>Ezerszem-tömeg (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3HS.3BL/CS/Mv9kr1</td>
<td>74,1</td>
<td>4,8</td>
<td>30,4</td>
<td>141,2</td>
<td>7,2</td>
<td>34,5</td>
</tr>
<tr>
<td>'Mv Bodri'</td>
<td>58,2</td>
<td>3,5</td>
<td>36</td>
<td>127,2</td>
<td>8,4</td>
<td>43,5</td>
</tr>
<tr>
<td>3HS.3BL/Bodri (F₁) I. vonal</td>
<td>62,1***</td>
<td>6***</td>
<td>37,1</td>
<td>222,6*</td>
<td>8**</td>
<td>32,1</td>
</tr>
<tr>
<td>3HS.3BL/Bodri (F₁) II. vonal</td>
<td>68,1***</td>
<td>6***</td>
<td>41,8**</td>
<td>238,9*</td>
<td>6,6***</td>
<td>33,5</td>
</tr>
<tr>
<td>'Chinese Spring'</td>
<td>81,9</td>
<td>5,2</td>
<td>31,3</td>
<td>162,8</td>
<td>6,6</td>
<td>32,1</td>
</tr>
<tr>
<td>Mv9kr1</td>
<td>66,9</td>
<td>4,4</td>
<td>40,5</td>
<td>178,4</td>
<td>8,7</td>
<td>38,4</td>
</tr>
</tbody>
</table>

Megjegyzés: * szignifikánsan különbözik a 3HS.3BL/CS/Mv9kr1 és 'Mv Bodri'-tól, ** szignifikánsan különbözik a 3HS.3BL/CS/Mv9kr1-tól, *** szignifikánsan különbözik az 'Mv Bodri'-tól (P=0,05% szignifikancia szinten)
M8. A két 3HS.3BL/Bodri testvér vonal (I vonal-szálkacsonkos és II vonal-tar), és a szülői búza genotípusok ('Mv Bodri' és CS fajta, Mv9kr1 búzatörzs) morfológiai adatai a 2013-2014 vegetációs időszakban (1.) Martonvásár Tükrös tenyészkert (2.) Martonvásár nemesítők tenyészkertje (Lászlópuszta)

<table>
<thead>
<tr>
<th>Genotípus</th>
<th>Növénymagasság (cm)</th>
<th>Bokrosodád kalász/növény</th>
<th>Szem/kalász</th>
<th>Szem/növény</th>
<th>Főkalász hossza (cm)</th>
<th>Ezerszem-tömeg (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.</td>
<td>2.</td>
<td>1.</td>
<td>2.</td>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>3HS.3BL /CS/Mv9kr1</td>
<td>130,6</td>
<td>109,9</td>
<td>11,6</td>
<td>8,9</td>
<td>35,2</td>
<td>37,9</td>
</tr>
<tr>
<td>'Mv Bodri'</td>
<td>79,6</td>
<td>72,8</td>
<td>5,5</td>
<td>9,3</td>
<td>34,5</td>
<td>50,2</td>
</tr>
<tr>
<td>3HS.3BL/Bodri (F₃) I. vonal</td>
<td>101,3*</td>
<td>94,3*</td>
<td>9,3***</td>
<td>11,4**</td>
<td>42,0*</td>
<td>52,5**</td>
</tr>
<tr>
<td>3HS.3BL/ Bodri (F₃) II. vonal</td>
<td>99,9*</td>
<td>101,3*</td>
<td>9,7***</td>
<td>11,8**</td>
<td>43,8*</td>
<td>46,6**</td>
</tr>
<tr>
<td>'Chinese Spring'</td>
<td>118,9</td>
<td>120</td>
<td>7,9</td>
<td>11,7</td>
<td>43,1</td>
<td>34,4</td>
</tr>
<tr>
<td>Mv9kr1</td>
<td>99</td>
<td>77,4</td>
<td>8,6</td>
<td>9,1</td>
<td>33,8</td>
<td>35,4</td>
</tr>
</tbody>
</table>

Megjegyzés: * szignifikánsan különbözik a 3HS.3BL/CS/Mv9kr1 és 'Mv Bodri'-tól, **szignifikánsan különbözik a 3HS.3BL/CS/Mv9kr1-tól ,*** szignifikánsan különbözik az 'Mv Bodri'-tól (P=0,05% szignifikancia szinten)
Hálás köszönetemet fejezem ki mindazoknak, akik PhD munkám és a disszertáció elkészítése során segítségemre voltak.

Köszönettel tartozom a Magyar Tudományos Akadémia Agrártudományi Kutatóközpont Mezőgazdasági Intézet jelenlegi főigazgatójának, Balázs Ervin akadémikus úrnak, és Bedő Zoltán akadémikus úrnak, az intézet volt főigazgatójának, hogy rendelkezésemre bocsátották azokat a szellemi, tárgyi és anyagi feltételeket, amelyek elengedhetetlenek voltak a kutatómunkám elvégzéséhez. Köszönetemet fejezem ki a Szent István Egyetem Növénytudományi Doktori Iskola jelenlegi és volt vezetőjének, Helyes Lajos professzor úrnak és Heszky László akadémikus úrnak, hogy részt vehettem a Növénygenetika és Biotechnológia Programban.

Hálás köszönettel tartozom témavezetőömnek Dr. Lángné Dr. Molnár Mártá az MTA doktorának, tudományos tanácsadónak, a Génmegőrzési és Organikus Nemesítési Osztály korábbi tudományos osztályvezetőjének áldozatos munkájáért, és, hogy lehetővé tette, hogy 2008-tól bekapcsolódjak az osztály munkájába, illetve megismertetett az idegen fajú keresztezések rejtelmeivel. Munkám során szakmai segítséget nyújtott és bátorított céljaim elérésében.

Köszönettel tartozom Dr. Linc Gabriella tudományos osztályvezetőnek, aki egyengette szakmai előmenetelemet, és kérdeéseimmel bármikor fordulhattam hozzá.

Köszönetemet fejezem ki a Kalászos Gabona Nemesítési Osztály volt és jelenlegi vezetőjének, Dr. Láng Lászlónak és Dr. Vida Gyulának, akik biztosították a genetikai anyag felszaporítását a nemesítői tenyészkertben és a Molekuláris Nemesítési Osztály vezetőjének, Dr. Karsai Ildikónak szakmai útmutatásáért.

Köszönöm Dr. Darkó Évának, a Növényélettani Osztály tudományos főmunkatársának a díteloszómás addiciós vonalak sötétvészen vizsgálatát, illetve Tóth Violának, Mayer Mariannak és Ivanisz Lászlónak a genetikai anyagok molekuláris markeres elemzését.

Háláson köszönöm szüleimnek, hogy mellettem álltak, szeretetükkel és támogatásukkal segítették álmaid megvalósulását. Végül, de nem utolsó sorban köszönöm családomnak, barátaimnak szeretetüket, bíztatásukat, lelki támogatásukat.